| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-itg2 | Structured version Visualization version Unicode version | ||
| Description: Define the Lebesgue
integral for nonnegative functions. A nonnegative
function's integral is the supremum of the integrals of all simple
functions that are less than the input function. Note that this may be
|
| Ref | Expression |
|---|---|
| df-itg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | citg2 23385 |
. 2
| |
| 2 | vf |
. . 3
| |
| 3 | cc0 9936 |
. . . . 5
| |
| 4 | cpnf 10071 |
. . . . 5
| |
| 5 | cicc 12178 |
. . . . 5
| |
| 6 | 3, 4, 5 | co 6650 |
. . . 4
|
| 7 | cr 9935 |
. . . 4
| |
| 8 | cmap 7857 |
. . . 4
| |
| 9 | 6, 7, 8 | co 6650 |
. . 3
|
| 10 | vg |
. . . . . . . . 9
| |
| 11 | 10 | cv 1482 |
. . . . . . . 8
|
| 12 | 2 | cv 1482 |
. . . . . . . 8
|
| 13 | cle 10075 |
. . . . . . . . 9
| |
| 14 | 13 | cofr 6896 |
. . . . . . . 8
|
| 15 | 11, 12, 14 | wbr 4653 |
. . . . . . 7
|
| 16 | vx |
. . . . . . . . 9
| |
| 17 | 16 | cv 1482 |
. . . . . . . 8
|
| 18 | citg1 23384 |
. . . . . . . . 9
| |
| 19 | 11, 18 | cfv 5888 |
. . . . . . . 8
|
| 20 | 17, 19 | wceq 1483 |
. . . . . . 7
|
| 21 | 15, 20 | wa 384 |
. . . . . 6
|
| 22 | 18 | cdm 5114 |
. . . . . 6
|
| 23 | 21, 10, 22 | wrex 2913 |
. . . . 5
|
| 24 | 23, 16 | cab 2608 |
. . . 4
|
| 25 | cxr 10073 |
. . . 4
| |
| 26 | clt 10074 |
. . . 4
| |
| 27 | 24, 25, 26 | csup 8346 |
. . 3
|
| 28 | 2, 9, 27 | cmpt 4729 |
. 2
|
| 29 | 1, 28 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: itg2val 23495 |
| Copyright terms: Public domain | W3C validator |