![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ibl | Structured version Visualization version Unicode version |
Description: Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
df-ibl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cibl 23386 |
. 2
![]() ![]() ![]() | |
2 | vx |
. . . . . . 7
![]() ![]() | |
3 | cr 9935 |
. . . . . . 7
![]() ![]() | |
4 | vy |
. . . . . . . 8
![]() ![]() | |
5 | 2 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
6 | vf |
. . . . . . . . . . . 12
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
8 | 5, 7 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
9 | ci 9938 |
. . . . . . . . . . 11
![]() ![]() | |
10 | vk |
. . . . . . . . . . . 12
![]() ![]() | |
11 | 10 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
12 | cexp 12860 |
. . . . . . . . . . 11
![]() ![]() | |
13 | 9, 11, 12 | co 6650 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
14 | cdiv 10684 |
. . . . . . . . . 10
![]() ![]() | |
15 | 8, 13, 14 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | cre 13837 |
. . . . . . . . 9
![]() ![]() | |
17 | 15, 16 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 7 | cdm 5114 |
. . . . . . . . . . 11
![]() ![]() ![]() |
19 | 5, 18 | wcel 1990 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() |
20 | cc0 9936 |
. . . . . . . . . . 11
![]() ![]() | |
21 | 4 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
22 | cle 10075 |
. . . . . . . . . . 11
![]() ![]() | |
23 | 20, 21, 22 | wbr 4653 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() |
24 | 19, 23 | wa 384 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24, 21, 20 | cif 4086 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 4, 17, 25 | csb 3533 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 2, 3, 26 | cmpt 4729 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | citg2 23385 |
. . . . . 6
![]() ![]() | |
29 | 27, 28 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 29, 3 | wcel 1990 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | c3 11071 |
. . . . 5
![]() ![]() | |
32 | cfz 12326 |
. . . . 5
![]() ![]() | |
33 | 20, 31, 32 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
34 | 30, 10, 33 | wral 2912 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | cmbf 23383 |
. . 3
![]() | |
36 | 34, 6, 35 | crab 2916 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 1, 36 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: isibl 23532 iblmbf 23534 |
Copyright terms: Public domain | W3C validator |