| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lgam | Structured version Visualization version Unicode version | ||
| Description: Define the log-Gamma
function. We can work with this form of the gamma
function a bit easier than the equivalent expression for the gamma
function itself, and moreover this function is not actually equal to
|
| Ref | Expression |
|---|---|
| df-lgam |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clgam 24742 |
. 2
| |
| 2 | vz |
. . 3
| |
| 3 | cc 9934 |
. . . 4
| |
| 4 | cz 11377 |
. . . . 5
| |
| 5 | cn 11020 |
. . . . 5
| |
| 6 | 4, 5 | cdif 3571 |
. . . 4
|
| 7 | 3, 6 | cdif 3571 |
. . 3
|
| 8 | 2 | cv 1482 |
. . . . . . 7
|
| 9 | vm |
. . . . . . . . . . 11
| |
| 10 | 9 | cv 1482 |
. . . . . . . . . 10
|
| 11 | c1 9937 |
. . . . . . . . . 10
| |
| 12 | caddc 9939 |
. . . . . . . . . 10
| |
| 13 | 10, 11, 12 | co 6650 |
. . . . . . . . 9
|
| 14 | cdiv 10684 |
. . . . . . . . 9
| |
| 15 | 13, 10, 14 | co 6650 |
. . . . . . . 8
|
| 16 | clog 24301 |
. . . . . . . 8
| |
| 17 | 15, 16 | cfv 5888 |
. . . . . . 7
|
| 18 | cmul 9941 |
. . . . . . 7
| |
| 19 | 8, 17, 18 | co 6650 |
. . . . . 6
|
| 20 | 8, 10, 14 | co 6650 |
. . . . . . . 8
|
| 21 | 20, 11, 12 | co 6650 |
. . . . . . 7
|
| 22 | 21, 16 | cfv 5888 |
. . . . . 6
|
| 23 | cmin 10266 |
. . . . . 6
| |
| 24 | 19, 22, 23 | co 6650 |
. . . . 5
|
| 25 | 5, 24, 9 | csu 14416 |
. . . 4
|
| 26 | 8, 16 | cfv 5888 |
. . . 4
|
| 27 | 25, 26, 23 | co 6650 |
. . 3
|
| 28 | 2, 7, 27 | cmpt 4729 |
. 2
|
| 29 | 1, 28 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: lgamgulm2 24762 lgamf 24768 iprodgam 31628 |
| Copyright terms: Public domain | W3C validator |