![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-lhyp | Structured version Visualization version Unicode version |
Description: Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e. all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
df-lhyp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clh 35270 |
. 2
![]() ![]() | |
2 | vk |
. . 3
![]() ![]() | |
3 | cvv 3200 |
. . 3
![]() ![]() | |
4 | vx |
. . . . . 6
![]() ![]() | |
5 | 4 | cv 1482 |
. . . . 5
![]() ![]() |
6 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
7 | cp1 17038 |
. . . . . 6
![]() ![]() | |
8 | 6, 7 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
9 | ccvr 34549 |
. . . . . 6
![]() ![]() | |
10 | 6, 9 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 5, 8, 10 | wbr 4653 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | cbs 15857 |
. . . . 5
![]() ![]() | |
13 | 6, 12 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 4, 13 | crab 2916 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 2, 3, 14 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 1, 15 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: lhpset 35281 |
Copyright terms: Public domain | W3C validator |