Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpset Structured version   Visualization version   Unicode version

Theorem lhpset 35281
Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lhpset.b  |-  B  =  ( Base `  K
)
lhpset.u  |-  .1.  =  ( 1. `  K )
lhpset.c  |-  C  =  (  <o  `  K )
lhpset.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhpset  |-  ( K  e.  A  ->  H  =  { w  e.  B  |  w C  .1.  }
)
Distinct variable groups:    w, B    w, C    w, K    w,  .1.
Allowed substitution hints:    A( w)    H( w)

Proof of Theorem lhpset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  A  ->  K  e.  _V )
2 lhpset.h . . 3  |-  H  =  ( LHyp `  K
)
3 fveq2 6191 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
4 lhpset.b . . . . . 6  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2674 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
6 eqidd 2623 . . . . . 6  |-  ( k  =  K  ->  w  =  w )
7 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  (  <o  `  k )  =  (  <o  `  K )
)
8 lhpset.c . . . . . . 7  |-  C  =  (  <o  `  K )
97, 8syl6eqr 2674 . . . . . 6  |-  ( k  =  K  ->  (  <o  `  k )  =  C )
10 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( 1. `  k )  =  ( 1. `  K
) )
11 lhpset.u . . . . . . 7  |-  .1.  =  ( 1. `  K )
1210, 11syl6eqr 2674 . . . . . 6  |-  ( k  =  K  ->  ( 1. `  k )  =  .1.  )
136, 9, 12breq123d 4667 . . . . 5  |-  ( k  =  K  ->  (
w (  <o  `  k
) ( 1. `  k )  <->  w C  .1.  ) )
145, 13rabeqbidv 3195 . . . 4  |-  ( k  =  K  ->  { w  e.  ( Base `  k
)  |  w ( 
<o  `  k ) ( 1. `  k ) }  =  { w  e.  B  |  w C  .1.  } )
15 df-lhyp 35274 . . . 4  |-  LHyp  =  ( k  e.  _V  |->  { w  e.  ( Base `  k )  |  w (  <o  `  k
) ( 1. `  k ) } )
16 fvex 6201 . . . . . 6  |-  ( Base `  K )  e.  _V
174, 16eqeltri 2697 . . . . 5  |-  B  e. 
_V
1817rabex 4813 . . . 4  |-  { w  e.  B  |  w C  .1.  }  e.  _V
1914, 15, 18fvmpt 6282 . . 3  |-  ( K  e.  _V  ->  ( LHyp `  K )  =  { w  e.  B  |  w C  .1.  }
)
202, 19syl5eq 2668 . 2  |-  ( K  e.  _V  ->  H  =  { w  e.  B  |  w C  .1.  }
)
211, 20syl 17 1  |-  ( K  e.  A  ->  H  =  { w  e.  B  |  w C  .1.  }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   class class class wbr 4653   ` cfv 5888   Basecbs 15857   1.cp1 17038    <o ccvr 34549   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lhyp 35274
This theorem is referenced by:  islhp  35282
  Copyright terms: Public domain W3C validator