![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-linds | Structured version Visualization version Unicode version |
Description: An independent set is a set which is independent as a family. See also islinds3 20173 and islinds4 20174. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
df-linds |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clinds 20144 |
. 2
![]() | |
2 | vw |
. . 3
![]() ![]() | |
3 | cvv 3200 |
. . 3
![]() ![]() | |
4 | cid 5023 |
. . . . . 6
![]() ![]() | |
5 | vs |
. . . . . . 7
![]() ![]() | |
6 | 5 | cv 1482 |
. . . . . 6
![]() ![]() |
7 | 4, 6 | cres 5116 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
8 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
9 | clindf 20143 |
. . . . 5
![]() | |
10 | 7, 8, 9 | wbr 4653 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | cbs 15857 |
. . . . . 6
![]() ![]() | |
12 | 8, 11 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | cpw 4158 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 10, 5, 13 | crab 2916 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 2, 3, 14 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 1, 15 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: islinds 20148 |
Copyright terms: Public domain | W3C validator |