![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-lindf | Structured version Visualization version Unicode version |
Description: An independent family is
a family of vectors, no nonzero multiple of
which can be expressed as a linear combination of other elements of the
family. This is almost, but not quite, the same as a function into an
independent set.
This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power. We can almost define family independence as a family of unequal elements with independent range, as islindf3 20165, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring. This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 20177) and only one representation for each element of the range (islindf5 20178). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
df-lindf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clindf 20143 |
. 2
![]() | |
2 | vf |
. . . . . . 7
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
4 | 3 | cdm 5114 |
. . . . 5
![]() ![]() ![]() |
5 | vw |
. . . . . . 7
![]() ![]() | |
6 | 5 | cv 1482 |
. . . . . 6
![]() ![]() |
7 | cbs 15857 |
. . . . . 6
![]() ![]() | |
8 | 6, 7 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4, 8, 3 | wf 5884 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | vk |
. . . . . . . . . . 11
![]() ![]() | |
11 | 10 | cv 1482 |
. . . . . . . . . 10
![]() ![]() |
12 | vx |
. . . . . . . . . . . 12
![]() ![]() | |
13 | 12 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
14 | 13, 3 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
15 | cvsca 15945 |
. . . . . . . . . . 11
![]() ![]() | |
16 | 6, 15 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
17 | 11, 14, 16 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 13 | csn 4177 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() |
19 | 4, 18 | cdif 3571 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 3, 19 | cima 5117 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | clspn 18971 |
. . . . . . . . . . 11
![]() ![]() | |
22 | 6, 21 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
23 | 20, 22 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 17, 23 | wcel 1990 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24 | wn 3 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | vs |
. . . . . . . . . 10
![]() ![]() | |
27 | 26 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
28 | 27, 7 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
29 | c0g 16100 |
. . . . . . . . . 10
![]() ![]() | |
30 | 27, 29 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
31 | 30 | csn 4177 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 28, 31 | cdif 3571 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 25, 10, 32 | wral 2912 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 33, 12, 4 | wral 2912 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | csca 15944 |
. . . . . 6
![]() | |
36 | 6, 35 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
37 | 34, 26, 36 | wsbc 3435 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 9, 37 | wa 384 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 38, 2, 5 | copab 4712 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 1, 39 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: rellindf 20147 islindf 20151 |
Copyright terms: Public domain | W3C validator |