| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lvec | Structured version Visualization version Unicode version | ||
| Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring multiplication is commutative i.e. a field. (Contributed by NM, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| df-lvec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clvec 19102 |
. 2
| |
| 2 | vf |
. . . . . 6
| |
| 3 | 2 | cv 1482 |
. . . . 5
|
| 4 | csca 15944 |
. . . . 5
| |
| 5 | 3, 4 | cfv 5888 |
. . . 4
|
| 6 | cdr 18747 |
. . . 4
| |
| 7 | 5, 6 | wcel 1990 |
. . 3
|
| 8 | clmod 18863 |
. . 3
| |
| 9 | 7, 2, 8 | crab 2916 |
. 2
|
| 10 | 1, 9 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: islvec 19104 bj-vecssmod 33143 |
| Copyright terms: Public domain | W3C validator |