Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-metid Structured version   Visualization version   Unicode version

Definition df-metid 29931
Description: Define the metric identification relation for a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
df-metid  |- ~Met  =  ( d  e.  U. ran PsMet  |->  { <. x ,  y
>.  |  ( (
x  e.  dom  dom  d  /\  y  e.  dom  dom  d )  /\  (
x d y )  =  0 ) } )
Distinct variable group:    x, d, y

Detailed syntax breakdown of Definition df-metid
StepHypRef Expression
1 cmetid 29929 . 2  class ~Met
2 vd . . 3  setvar  d
3 cpsmet 19730 . . . . 5  class PsMet
43crn 5115 . . . 4  class  ran PsMet
54cuni 4436 . . 3  class  U. ran PsMet
6 vx . . . . . . . 8  setvar  x
76cv 1482 . . . . . . 7  class  x
82cv 1482 . . . . . . . . 9  class  d
98cdm 5114 . . . . . . . 8  class  dom  d
109cdm 5114 . . . . . . 7  class  dom  dom  d
117, 10wcel 1990 . . . . . 6  wff  x  e. 
dom  dom  d
12 vy . . . . . . . 8  setvar  y
1312cv 1482 . . . . . . 7  class  y
1413, 10wcel 1990 . . . . . 6  wff  y  e. 
dom  dom  d
1511, 14wa 384 . . . . 5  wff  ( x  e.  dom  dom  d  /\  y  e.  dom  dom  d )
167, 13, 8co 6650 . . . . . 6  class  ( x d y )
17 cc0 9936 . . . . . 6  class  0
1816, 17wceq 1483 . . . . 5  wff  ( x d y )  =  0
1915, 18wa 384 . . . 4  wff  ( ( x  e.  dom  dom  d  /\  y  e.  dom  dom  d )  /\  (
x d y )  =  0 )
2019, 6, 12copab 4712 . . 3  class  { <. x ,  y >.  |  ( ( x  e.  dom  dom  d  /\  y  e. 
dom  dom  d )  /\  ( x d y )  =  0 ) }
212, 5, 20cmpt 4729 . 2  class  ( d  e.  U. ran PsMet  |->  { <. x ,  y >.  |  ( ( x  e.  dom  dom  d  /\  y  e. 
dom  dom  d )  /\  ( x d y )  =  0 ) } )
221, 21wceq 1483 1  wff ~Met  =  ( d  e.  U. ran PsMet  |->  { <. x ,  y
>.  |  ( (
x  e.  dom  dom  d  /\  y  e.  dom  dom  d )  /\  (
x d y )  =  0 ) } )
Colors of variables: wff setvar class
This definition is referenced by:  metidval  29933
  Copyright terms: Public domain W3C validator