Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidval Structured version   Visualization version   Unicode version

Theorem metidval 29933
Description: Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidval  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  =  { <. x ,  y >.  |  ( ( x  e.  X  /\  y  e.  X
)  /\  ( x D y )  =  0 ) } )
Distinct variable groups:    x, y, D    x, X, y

Proof of Theorem metidval
Dummy variables  w  d  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-metid 29931 . . 3  |- ~Met  =  ( d  e.  U. ran PsMet  |->  { <. x ,  y
>.  |  ( (
x  e.  dom  dom  d  /\  y  e.  dom  dom  d )  /\  (
x d y )  =  0 ) } )
21a1i 11 . 2  |-  ( D  e.  (PsMet `  X
)  -> ~Met  =  (
d  e.  U. ran PsMet  |->  { <. x ,  y
>.  |  ( (
x  e.  dom  dom  d  /\  y  e.  dom  dom  d )  /\  (
x d y )  =  0 ) } ) )
3 simpr 477 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  d  =  D )
43dmeqd 5326 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  dom  d  =  dom  D )
54dmeqd 5326 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  dom  dom  d  =  dom  dom  D )
6 psmetdmdm 22110 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )
76adantr 481 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  X  =  dom  dom  D )
85, 7eqtr4d 2659 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  dom  dom  d  =  X )
98eleq2d 2687 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
x  e.  dom  dom  d 
<->  x  e.  X ) )
108eleq2d 2687 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
y  e.  dom  dom  d 
<->  y  e.  X ) )
119, 10anbi12d 747 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
( x  e.  dom  dom  d  /\  y  e. 
dom  dom  d )  <->  ( x  e.  X  /\  y  e.  X ) ) )
123oveqd 6667 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
x d y )  =  ( x D y ) )
1312eqeq1d 2624 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
( x d y )  =  0  <->  (
x D y )  =  0 ) )
1411, 13anbi12d 747 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
( ( x  e. 
dom  dom  d  /\  y  e.  dom  dom  d )  /\  ( x d y )  =  0 )  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  (
x D y )  =  0 ) ) )
1514opabbidv 4716 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  { <. x ,  y >.  |  ( ( x  e.  dom  dom  d  /\  y  e. 
dom  dom  d )  /\  ( x d y )  =  0 ) }  =  { <. x ,  y >.  |  ( ( x  e.  X  /\  y  e.  X
)  /\  ( x D y )  =  0 ) } )
16 elfvdm 6220 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
17 fveq2 6191 . . . . . 6  |-  ( x  =  X  ->  (PsMet `  x )  =  (PsMet `  X ) )
1817eleq2d 2687 . . . . 5  |-  ( x  =  X  ->  ( D  e.  (PsMet `  x
)  <->  D  e.  (PsMet `  X ) ) )
1918rspcev 3309 . . . 4  |-  ( ( X  e.  dom PsMet  /\  D  e.  (PsMet `  X )
)  ->  E. x  e.  dom PsMet D  e.  (PsMet `  x ) )
2016, 19mpancom 703 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  E. x  e.  dom PsMet D  e.  (PsMet `  x ) )
21 df-psmet 19738 . . . . 5  |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  (
( y d y )  =  0  /\ 
A. z  e.  x  A. w  e.  x  ( y d z )  <_  ( (
w d y ) +e ( w d z ) ) ) } )
2221funmpt2 5927 . . . 4  |-  Fun PsMet
23 elunirn 6509 . . . 4  |-  ( Fun PsMet  ->  ( D  e.  U. ran PsMet  <->  E. x  e.  dom PsMet D  e.  (PsMet `  x
) ) )
2422, 23ax-mp 5 . . 3  |-  ( D  e.  U. ran PsMet  <->  E. x  e.  dom PsMet D  e.  (PsMet `  x ) )
2520, 24sylibr 224 . 2  |-  ( D  e.  (PsMet `  X
)  ->  D  e.  U.
ran PsMet )
26 opabssxp 5193 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  X  /\  y  e.  X
)  /\  ( x D y )  =  0 ) }  C_  ( X  X.  X
)
27 elfvex 6221 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
28 xpexg 6960 . . . 4  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
2927, 27, 28syl2anc 693 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( X  X.  X )  e.  _V )
30 ssexg 4804 . . 3  |-  ( ( { <. x ,  y
>.  |  ( (
x  e.  X  /\  y  e.  X )  /\  ( x D y )  =  0 ) }  C_  ( X  X.  X )  /\  ( X  X.  X )  e. 
_V )  ->  { <. x ,  y >.  |  ( ( x  e.  X  /\  y  e.  X
)  /\  ( x D y )  =  0 ) }  e.  _V )
3126, 29, 30sylancr 695 . 2  |-  ( D  e.  (PsMet `  X
)  ->  { <. x ,  y >.  |  ( ( x  e.  X  /\  y  e.  X
)  /\  ( x D y )  =  0 ) }  e.  _V )
322, 15, 25, 31fvmptd 6288 1  |-  ( D  e.  (PsMet `  X
)  ->  (~Met `  D
)  =  { <. x ,  y >.  |  ( ( x  e.  X  /\  y  e.  X
)  /\  ( x D y )  =  0 ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   RR*cxr 10073    <_ cle 10075   +ecxad 11944  PsMetcpsmet 19730  ~Metcmetid 29929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-psmet 19738  df-metid 29931
This theorem is referenced by:  metidss  29934  metidv  29935
  Copyright terms: Public domain W3C validator