![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nghm | Structured version Visualization version Unicode version |
Description: Define the set of normed group homomorphisms between two normed groups. A normed group homomorphism is a group homomorphism which additionally bounds the increase of norm by a fixed real operator. In vector spaces these are also known as bounded linear operators. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
df-nghm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnghm 22510 |
. 2
![]() | |
2 | vs |
. . 3
![]() ![]() | |
3 | vt |
. . 3
![]() ![]() | |
4 | cngp 22382 |
. . 3
![]() | |
5 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
6 | 3 | cv 1482 |
. . . . . 6
![]() ![]() |
7 | cnmo 22509 |
. . . . . 6
![]() ![]() | |
8 | 5, 6, 7 | co 6650 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | ccnv 5113 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | cr 9935 |
. . . 4
![]() ![]() | |
11 | 9, 10 | cima 5117 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 2, 3, 4, 4, 11 | cmpt2 6652 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 1, 12 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: reldmnghm 22516 nghmfval 22526 |
Copyright terms: Public domain | W3C validator |