![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nmhm | Structured version Visualization version Unicode version |
Description: Define a normed module
homomorphism, also known as a bounded linear
operator. This is a module homomorphism (a linear function) such that
the operator norm is finite, or equivalently there is a constant ![]() |
Ref | Expression |
---|---|
df-nmhm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmhm 22511 |
. 2
![]() | |
2 | vs |
. . 3
![]() ![]() | |
3 | vt |
. . 3
![]() ![]() | |
4 | cnlm 22385 |
. . 3
![]() | |
5 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
6 | 3 | cv 1482 |
. . . . 5
![]() ![]() |
7 | clmhm 19019 |
. . . . 5
![]() | |
8 | 5, 6, 7 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
9 | cnghm 22510 |
. . . . 5
![]() | |
10 | 5, 6, 9 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | cin 3573 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 2, 3, 4, 4, 11 | cmpt2 6652 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 1, 12 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: reldmnmhm 22517 isnmhm 22550 |
Copyright terms: Public domain | W3C validator |