MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-obs Structured version   Visualization version   Unicode version

Definition df-obs 20049
Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
df-obs  |- OBasis  =  ( h  e.  PreHil  |->  { b  e.  ~P ( Base `  h )  |  ( A. x  e.  b 
A. y  e.  b  ( x ( .i
`  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `  b
)  =  { ( 0g `  h ) } ) } )
Distinct variable group:    h, b, x, y

Detailed syntax breakdown of Definition df-obs
StepHypRef Expression
1 cobs 20046 . 2  class OBasis
2 vh . . 3  setvar  h
3 cphl 19969 . . 3  class  PreHil
4 vx . . . . . . . . . 10  setvar  x
54cv 1482 . . . . . . . . 9  class  x
6 vy . . . . . . . . . 10  setvar  y
76cv 1482 . . . . . . . . 9  class  y
82cv 1482 . . . . . . . . . 10  class  h
9 cip 15946 . . . . . . . . . 10  class  .i
108, 9cfv 5888 . . . . . . . . 9  class  ( .i
`  h )
115, 7, 10co 6650 . . . . . . . 8  class  ( x ( .i `  h
) y )
124, 6weq 1874 . . . . . . . . 9  wff  x  =  y
13 csca 15944 . . . . . . . . . . 11  class Scalar
148, 13cfv 5888 . . . . . . . . . 10  class  (Scalar `  h )
15 cur 18501 . . . . . . . . . 10  class  1r
1614, 15cfv 5888 . . . . . . . . 9  class  ( 1r
`  (Scalar `  h )
)
17 c0g 16100 . . . . . . . . . 10  class  0g
1814, 17cfv 5888 . . . . . . . . 9  class  ( 0g
`  (Scalar `  h )
)
1912, 16, 18cif 4086 . . . . . . . 8  class  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )
2011, 19wceq 1483 . . . . . . 7  wff  ( x ( .i `  h
) y )  =  if ( x  =  y ,  ( 1r
`  (Scalar `  h )
) ,  ( 0g
`  (Scalar `  h )
) )
21 vb . . . . . . . 8  setvar  b
2221cv 1482 . . . . . . 7  class  b
2320, 6, 22wral 2912 . . . . . 6  wff  A. y  e.  b  ( x
( .i `  h
) y )  =  if ( x  =  y ,  ( 1r
`  (Scalar `  h )
) ,  ( 0g
`  (Scalar `  h )
) )
2423, 4, 22wral 2912 . . . . 5  wff  A. x  e.  b  A. y  e.  b  ( x
( .i `  h
) y )  =  if ( x  =  y ,  ( 1r
`  (Scalar `  h )
) ,  ( 0g
`  (Scalar `  h )
) )
25 cocv 20004 . . . . . . . 8  class  ocv
268, 25cfv 5888 . . . . . . 7  class  ( ocv `  h )
2722, 26cfv 5888 . . . . . 6  class  ( ( ocv `  h ) `
 b )
288, 17cfv 5888 . . . . . . 7  class  ( 0g
`  h )
2928csn 4177 . . . . . 6  class  { ( 0g `  h ) }
3027, 29wceq 1483 . . . . 5  wff  ( ( ocv `  h ) `
 b )  =  { ( 0g `  h ) }
3124, 30wa 384 . . . 4  wff  ( A. x  e.  b  A. y  e.  b  (
x ( .i `  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `  b
)  =  { ( 0g `  h ) } )
32 cbs 15857 . . . . . 6  class  Base
338, 32cfv 5888 . . . . 5  class  ( Base `  h )
3433cpw 4158 . . . 4  class  ~P ( Base `  h )
3531, 21, 34crab 2916 . . 3  class  { b  e.  ~P ( Base `  h )  |  ( A. x  e.  b 
A. y  e.  b  ( x ( .i
`  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `  b
)  =  { ( 0g `  h ) } ) }
362, 3, 35cmpt 4729 . 2  class  ( h  e.  PreHil  |->  { b  e. 
~P ( Base `  h
)  |  ( A. x  e.  b  A. y  e.  b  (
x ( .i `  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `  b
)  =  { ( 0g `  h ) } ) } )
371, 36wceq 1483 1  wff OBasis  =  ( h  e.  PreHil  |->  { b  e.  ~P ( Base `  h )  |  ( A. x  e.  b 
A. y  e.  b  ( x ( .i
`  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `  b
)  =  { ( 0g `  h ) } ) } )
Colors of variables: wff setvar class
This definition is referenced by:  isobs  20064
  Copyright terms: Public domain W3C validator