MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval Structured version   Visualization version   Unicode version

Theorem pjfval 20050
Description: The value of the projection function. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v  |-  V  =  ( Base `  W
)
pjfval.l  |-  L  =  ( LSubSp `  W )
pjfval.o  |-  ._|_  =  ( ocv `  W )
pjfval.p  |-  P  =  ( proj1 `  W )
pjfval.k  |-  K  =  ( proj `  W
)
Assertion
Ref Expression
pjfval  |-  K  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )
Distinct variable groups:    x,  ._|_    x, L    x, P    x, V    x, W
Allowed substitution hint:    K( x)

Proof of Theorem pjfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 pjfval.k . 2  |-  K  =  ( proj `  W
)
2 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
3 pjfval.l . . . . . . 7  |-  L  =  ( LSubSp `  W )
42, 3syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  L )
5 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( proj1 `  w )  =  ( proj1 `  W ) )
6 pjfval.p . . . . . . . 8  |-  P  =  ( proj1 `  W )
75, 6syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  ( proj1 `  w )  =  P )
8 eqidd 2623 . . . . . . 7  |-  ( w  =  W  ->  x  =  x )
9 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  ( ocv `  w )  =  ( ocv `  W
) )
10 pjfval.o . . . . . . . . 9  |-  ._|_  =  ( ocv `  W )
119, 10syl6eqr 2674 . . . . . . . 8  |-  ( w  =  W  ->  ( ocv `  w )  = 
._|_  )
1211fveq1d 6193 . . . . . . 7  |-  ( w  =  W  ->  (
( ocv `  w
) `  x )  =  (  ._|_  `  x
) )
137, 8, 12oveq123d 6671 . . . . . 6  |-  ( w  =  W  ->  (
x ( proj1 `  w ) ( ( ocv `  w ) `
 x ) )  =  ( x P (  ._|_  `  x ) ) )
144, 13mpteq12dv 4733 . . . . 5  |-  ( w  =  W  ->  (
x  e.  ( LSubSp `  w )  |->  ( x ( proj1 `  w ) ( ( ocv `  w ) `
 x ) ) )  =  ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) ) )
15 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
16 pjfval.v . . . . . . . 8  |-  V  =  ( Base `  W
)
1715, 16syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  V )
1817, 17oveq12d 6668 . . . . . 6  |-  ( w  =  W  ->  (
( Base `  w )  ^m  ( Base `  w
) )  =  ( V  ^m  V ) )
1918xpeq2d 5139 . . . . 5  |-  ( w  =  W  ->  ( _V  X.  ( ( Base `  w )  ^m  ( Base `  w ) ) )  =  ( _V 
X.  ( V  ^m  V ) ) )
2014, 19ineq12d 3815 . . . 4  |-  ( w  =  W  ->  (
( x  e.  (
LSubSp `  w )  |->  ( x ( proj1 `  w ) ( ( ocv `  w ) `
 x ) ) )  i^i  ( _V 
X.  ( ( Base `  w )  ^m  ( Base `  w ) ) ) )  =  ( ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) ) )
21 df-pj 20047 . . . 4  |-  proj  =  ( w  e.  _V  |->  ( ( x  e.  ( LSubSp `  w )  |->  ( x ( proj1 `  w )
( ( ocv `  w
) `  x )
) )  i^i  ( _V  X.  ( ( Base `  w )  ^m  ( Base `  w ) ) ) ) )
22 fvex 6201 . . . . . . . 8  |-  ( LSubSp `  W )  e.  _V
233, 22eqeltri 2697 . . . . . . 7  |-  L  e. 
_V
2423inex1 4799 . . . . . 6  |-  ( L  i^i  _V )  e. 
_V
25 ovex 6678 . . . . . . 7  |-  ( V  ^m  V )  e. 
_V
2625inex2 4800 . . . . . 6  |-  ( _V 
i^i  ( V  ^m  V ) )  e. 
_V
2724, 26xpex 6962 . . . . 5  |-  ( ( L  i^i  _V )  X.  ( _V  i^i  ( V  ^m  V ) ) )  e.  _V
28 eqid 2622 . . . . . . . 8  |-  ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) )  =  ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )
29 ovexd 6680 . . . . . . . 8  |-  ( x  e.  L  ->  (
x P (  ._|_  `  x ) )  e. 
_V )
3028, 29fmpti 6383 . . . . . . 7  |-  ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) ) : L --> _V
31 fssxp 6060 . . . . . . 7  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) ) : L --> _V  ->  ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) ) 
C_  ( L  X.  _V ) )
32 ssrin 3838 . . . . . . 7  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) ) 
C_  ( L  X.  _V )  ->  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  C_  (
( L  X.  _V )  i^i  ( _V  X.  ( V  ^m  V ) ) ) )
3330, 31, 32mp2b 10 . . . . . 6  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  C_  (
( L  X.  _V )  i^i  ( _V  X.  ( V  ^m  V ) ) )
34 inxp 5254 . . . . . 6  |-  ( ( L  X.  _V )  i^i  ( _V  X.  ( V  ^m  V ) ) )  =  ( ( L  i^i  _V )  X.  ( _V  i^i  ( V  ^m  V ) ) )
3533, 34sseqtri 3637 . . . . 5  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  C_  (
( L  i^i  _V )  X.  ( _V  i^i  ( V  ^m  V ) ) )
3627, 35ssexi 4803 . . . 4  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  e.  _V
3720, 21, 36fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  ( proj `  W )  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) ) )
38 fvprc 6185 . . . 4  |-  ( -.  W  e.  _V  ->  (
proj `  W )  =  (/) )
39 inss1 3833 . . . . 5  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  C_  (
x  e.  L  |->  ( x P (  ._|_  `  x ) ) )
40 fvprc 6185 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  (
LSubSp `  W )  =  (/) )
413, 40syl5eq 2668 . . . . . . 7  |-  ( -.  W  e.  _V  ->  L  =  (/) )
4241mpteq1d 4738 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  =  ( x  e.  (/)  |->  ( x P (  ._|_  `  x ) ) ) )
43 mpt0 6021 . . . . . 6  |-  ( x  e.  (/)  |->  ( x P (  ._|_  `  x ) ) )  =  (/)
4442, 43syl6eq 2672 . . . . 5  |-  ( -.  W  e.  _V  ->  ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  =  (/) )
45 sseq0 3975 . . . . 5  |-  ( ( ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) ) 
C_  ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  /\  (
x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  =  (/) )  ->  (
( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) )  =  (/) )
4639, 44, 45sylancr 695 . . . 4  |-  ( -.  W  e.  _V  ->  ( ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) )  =  (/) )
4738, 46eqtr4d 2659 . . 3  |-  ( -.  W  e.  _V  ->  (
proj `  W )  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) ) )
4837, 47pm2.61i 176 . 2  |-  ( proj `  W )  =  ( ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) )
491, 48eqtri 2644 1  |-  K  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915    |-> cmpt 4729    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Basecbs 15857   proj1cpj1 18050   LSubSpclss 18932   ocvcocv 20004   projcpj 20044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-pj 20047
This theorem is referenced by:  pjdm  20051  pjpm  20052  pjfval2  20053
  Copyright terms: Public domain W3C validator