| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-perf | Structured version Visualization version Unicode version | ||
| Description: Define the class of all perfect spaces. A perfect space is one for which every point in the set is a limit point of the whole space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| df-perf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cperf 20939 |
. 2
| |
| 2 | vj |
. . . . . . 7
| |
| 3 | 2 | cv 1482 |
. . . . . 6
|
| 4 | 3 | cuni 4436 |
. . . . 5
|
| 5 | clp 20938 |
. . . . . 6
| |
| 6 | 3, 5 | cfv 5888 |
. . . . 5
|
| 7 | 4, 6 | cfv 5888 |
. . . 4
|
| 8 | 7, 4 | wceq 1483 |
. . 3
|
| 9 | ctop 20698 |
. . 3
| |
| 10 | 8, 2, 9 | crab 2916 |
. 2
|
| 11 | 1, 10 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: isperf 20955 |
| Copyright terms: Public domain | W3C validator |