MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpfval Structured version   Visualization version   Unicode version

Theorem lpfval 20942
Description: The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
lpfval.1  |-  X  = 
U. J
Assertion
Ref Expression
lpfval  |-  ( J  e.  Top  ->  ( limPt `  J )  =  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } ) )
Distinct variable groups:    x, y, J    x, X, y

Proof of Theorem lpfval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . 4  |-  X  = 
U. J
21topopn 20711 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 pwexg 4850 . . 3  |-  ( X  e.  J  ->  ~P X  e.  _V )
4 mptexg 6484 . . 3  |-  ( ~P X  e.  _V  ->  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `  (
x  \  { y } ) ) } )  e.  _V )
52, 3, 43syl 18 . 2  |-  ( J  e.  Top  ->  (
x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `  (
x  \  { y } ) ) } )  e.  _V )
6 unieq 4444 . . . . . 6  |-  ( j  =  J  ->  U. j  =  U. J )
76, 1syl6eqr 2674 . . . . 5  |-  ( j  =  J  ->  U. j  =  X )
87pweqd 4163 . . . 4  |-  ( j  =  J  ->  ~P U. j  =  ~P X
)
9 fveq2 6191 . . . . . . 7  |-  ( j  =  J  ->  ( cls `  j )  =  ( cls `  J
) )
109fveq1d 6193 . . . . . 6  |-  ( j  =  J  ->  (
( cls `  j
) `  ( x  \  { y } ) )  =  ( ( cls `  J ) `
 ( x  \  { y } ) ) )
1110eleq2d 2687 . . . . 5  |-  ( j  =  J  ->  (
y  e.  ( ( cls `  j ) `
 ( x  \  { y } ) )  <->  y  e.  ( ( cls `  J
) `  ( x  \  { y } ) ) ) )
1211abbidv 2741 . . . 4  |-  ( j  =  J  ->  { y  |  y  e.  ( ( cls `  j
) `  ( x  \  { y } ) ) }  =  {
y  |  y  e.  ( ( cls `  J
) `  ( x  \  { y } ) ) } )
138, 12mpteq12dv 4733 . . 3  |-  ( j  =  J  ->  (
x  e.  ~P U. j  |->  { y  |  y  e.  ( ( cls `  j ) `
 ( x  \  { y } ) ) } )  =  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } ) )
14 df-lp 20940 . . 3  |-  limPt  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  |  y  e.  ( ( cls `  j ) `
 ( x  \  { y } ) ) } ) )
1513, 14fvmptg 6280 . 2  |-  ( ( J  e.  Top  /\  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } )  e. 
_V )  ->  ( limPt `  J )  =  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } ) )
165, 15mpdan 702 1  |-  ( J  e.  Top  ->  ( limPt `  J )  =  ( x  e.  ~P X  |->  { y  |  y  e.  ( ( cls `  J ) `
 ( x  \  { y } ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    \ cdif 3571   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   ` cfv 5888   Topctop 20698   clsccl 20822   limPtclp 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-lp 20940
This theorem is referenced by:  lpval  20943
  Copyright terms: Public domain W3C validator