| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pgp | Structured version Visualization version Unicode version | ||
| Description: Define the set of
p-groups, which are groups such that every element has
a power of |
| Ref | Expression |
|---|---|
| df-pgp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpgp 17946 |
. 2
| |
| 2 | vp |
. . . . . . 7
| |
| 3 | 2 | cv 1482 |
. . . . . 6
|
| 4 | cprime 15385 |
. . . . . 6
| |
| 5 | 3, 4 | wcel 1990 |
. . . . 5
|
| 6 | vg |
. . . . . . 7
| |
| 7 | 6 | cv 1482 |
. . . . . 6
|
| 8 | cgrp 17422 |
. . . . . 6
| |
| 9 | 7, 8 | wcel 1990 |
. . . . 5
|
| 10 | 5, 9 | wa 384 |
. . . 4
|
| 11 | vx |
. . . . . . . . 9
| |
| 12 | 11 | cv 1482 |
. . . . . . . 8
|
| 13 | cod 17944 |
. . . . . . . . 9
| |
| 14 | 7, 13 | cfv 5888 |
. . . . . . . 8
|
| 15 | 12, 14 | cfv 5888 |
. . . . . . 7
|
| 16 | vn |
. . . . . . . . 9
| |
| 17 | 16 | cv 1482 |
. . . . . . . 8
|
| 18 | cexp 12860 |
. . . . . . . 8
| |
| 19 | 3, 17, 18 | co 6650 |
. . . . . . 7
|
| 20 | 15, 19 | wceq 1483 |
. . . . . 6
|
| 21 | cn0 11292 |
. . . . . 6
| |
| 22 | 20, 16, 21 | wrex 2913 |
. . . . 5
|
| 23 | cbs 15857 |
. . . . . 6
| |
| 24 | 7, 23 | cfv 5888 |
. . . . 5
|
| 25 | 22, 11, 24 | wral 2912 |
. . . 4
|
| 26 | 10, 25 | wa 384 |
. . 3
|
| 27 | 26, 2, 6 | copab 4712 |
. 2
|
| 28 | 1, 27 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: ispgp 18007 |
| Copyright terms: Public domain | W3C validator |