MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispgp Structured version   Visualization version   Unicode version

Theorem ispgp 18007
Description: A group is a  P-group if every element has some power of  P as its order. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
ispgp.1  |-  X  =  ( Base `  G
)
ispgp.2  |-  O  =  ( od `  G
)
Assertion
Ref Expression
ispgp  |-  ( P pGrp 
G  <->  ( P  e. 
Prime  /\  G  e.  Grp  /\ 
A. x  e.  X  E. n  e.  NN0  ( O `  x )  =  ( P ^
n ) ) )
Distinct variable groups:    x, n, G    P, n, x    x, X
Allowed substitution hints:    O( x, n)    X( n)

Proof of Theorem ispgp
Dummy variables  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6  |-  ( ( p  =  P  /\  g  =  G )  ->  g  =  G )
21fveq2d 6195 . . . . 5  |-  ( ( p  =  P  /\  g  =  G )  ->  ( Base `  g
)  =  ( Base `  G ) )
3 ispgp.1 . . . . 5  |-  X  =  ( Base `  G
)
42, 3syl6eqr 2674 . . . 4  |-  ( ( p  =  P  /\  g  =  G )  ->  ( Base `  g
)  =  X )
51fveq2d 6195 . . . . . . . 8  |-  ( ( p  =  P  /\  g  =  G )  ->  ( od `  g
)  =  ( od
`  G ) )
6 ispgp.2 . . . . . . . 8  |-  O  =  ( od `  G
)
75, 6syl6eqr 2674 . . . . . . 7  |-  ( ( p  =  P  /\  g  =  G )  ->  ( od `  g
)  =  O )
87fveq1d 6193 . . . . . 6  |-  ( ( p  =  P  /\  g  =  G )  ->  ( ( od `  g ) `  x
)  =  ( O `
 x ) )
9 simpl 473 . . . . . . 7  |-  ( ( p  =  P  /\  g  =  G )  ->  p  =  P )
109oveq1d 6665 . . . . . 6  |-  ( ( p  =  P  /\  g  =  G )  ->  ( p ^ n
)  =  ( P ^ n ) )
118, 10eqeq12d 2637 . . . . 5  |-  ( ( p  =  P  /\  g  =  G )  ->  ( ( ( od
`  g ) `  x )  =  ( p ^ n )  <-> 
( O `  x
)  =  ( P ^ n ) ) )
1211rexbidv 3052 . . . 4  |-  ( ( p  =  P  /\  g  =  G )  ->  ( E. n  e. 
NN0  ( ( od
`  g ) `  x )  =  ( p ^ n )  <->  E. n  e.  NN0  ( O `  x )  =  ( P ^
n ) ) )
134, 12raleqbidv 3152 . . 3  |-  ( ( p  =  P  /\  g  =  G )  ->  ( A. x  e.  ( Base `  g
) E. n  e. 
NN0  ( ( od
`  g ) `  x )  =  ( p ^ n )  <->  A. x  e.  X  E. n  e.  NN0  ( O `  x )  =  ( P ^
n ) ) )
14 df-pgp 17950 . . 3  |- pGrp  =  { <. p ,  g >.  |  ( ( p  e.  Prime  /\  g  e.  Grp )  /\  A. x  e.  ( Base `  g ) E. n  e.  NN0  ( ( od
`  g ) `  x )  =  ( p ^ n ) ) }
1513, 14brab2a 5194 . 2  |-  ( P pGrp 
G  <->  ( ( P  e.  Prime  /\  G  e. 
Grp )  /\  A. x  e.  X  E. n  e.  NN0  ( O `
 x )  =  ( P ^ n
) ) )
16 df-3an 1039 . 2  |-  ( ( P  e.  Prime  /\  G  e.  Grp  /\  A. x  e.  X  E. n  e.  NN0  ( O `  x )  =  ( P ^ n ) )  <->  ( ( P  e.  Prime  /\  G  e. 
Grp )  /\  A. x  e.  X  E. n  e.  NN0  ( O `
 x )  =  ( P ^ n
) ) )
1715, 16bitr4i 267 1  |-  ( P pGrp 
G  <->  ( P  e. 
Prime  /\  G  e.  Grp  /\ 
A. x  e.  X  E. n  e.  NN0  ( O `  x )  =  ( P ^
n ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   NN0cn0 11292   ^cexp 12860   Primecprime 15385   Basecbs 15857   Grpcgrp 17422   odcod 17944   pGrp cpgp 17946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-ov 6653  df-pgp 17950
This theorem is referenced by:  pgpprm  18008  pgpgrp  18009  pgpfi1  18010  subgpgp  18012  pgpfi  18020
  Copyright terms: Public domain W3C validator