MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-poset Structured version   Visualization version   Unicode version

Definition df-poset 16946
Description: Define the class of partially ordered sets (posets). A poset is a set equipped with a partial order, that is, a binary relation which is reflexive, antisymmetric, and transitive. Unlike a total order, in a partial order there may be pairs of elements where neither precedes the other. Definition of poset in [Crawley] p. 1. Note that Crawley-Dilworth require that a poset base set be nonempty, but we follow the convention of most authors who don't make this a requirement.

In our formalism of extensible structures, the base set of a poset  f is denoted by  ( Base `  f
) and its partial order by  ( le `  f ) (for "less than or equal to"). The quantifiers  E. b E. r provide a notational shorthand to allow us to refer to the base and ordering relation as  b and  r in the definition rather than having to repeat  ( Base `  f
) and  ( le `  f ) throughout. These quantifiers can be eliminated with ceqsex2v 3245 and related theorems. (Contributed by NM, 18-Oct-2012.)

Assertion
Ref Expression
df-poset  |-  Poset  =  {
f  |  E. b E. r ( b  =  ( Base `  f
)  /\  r  =  ( le `  f )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) ) }
Distinct variable group:    f, b, r, x, y, z

Detailed syntax breakdown of Definition df-poset
StepHypRef Expression
1 cpo 16940 . 2  class  Poset
2 vb . . . . . . . 8  setvar  b
32cv 1482 . . . . . . 7  class  b
4 vf . . . . . . . . 9  setvar  f
54cv 1482 . . . . . . . 8  class  f
6 cbs 15857 . . . . . . . 8  class  Base
75, 6cfv 5888 . . . . . . 7  class  ( Base `  f )
83, 7wceq 1483 . . . . . 6  wff  b  =  ( Base `  f
)
9 vr . . . . . . . 8  setvar  r
109cv 1482 . . . . . . 7  class  r
11 cple 15948 . . . . . . . 8  class  le
125, 11cfv 5888 . . . . . . 7  class  ( le
`  f )
1310, 12wceq 1483 . . . . . 6  wff  r  =  ( le `  f
)
14 vx . . . . . . . . . . . 12  setvar  x
1514cv 1482 . . . . . . . . . . 11  class  x
1615, 15, 10wbr 4653 . . . . . . . . . 10  wff  x r x
17 vy . . . . . . . . . . . . . 14  setvar  y
1817cv 1482 . . . . . . . . . . . . 13  class  y
1915, 18, 10wbr 4653 . . . . . . . . . . . 12  wff  x r y
2018, 15, 10wbr 4653 . . . . . . . . . . . 12  wff  y r x
2119, 20wa 384 . . . . . . . . . . 11  wff  ( x r y  /\  y
r x )
2214, 17weq 1874 . . . . . . . . . . 11  wff  x  =  y
2321, 22wi 4 . . . . . . . . . 10  wff  ( ( x r y  /\  y r x )  ->  x  =  y )
24 vz . . . . . . . . . . . . . 14  setvar  z
2524cv 1482 . . . . . . . . . . . . 13  class  z
2618, 25, 10wbr 4653 . . . . . . . . . . . 12  wff  y r z
2719, 26wa 384 . . . . . . . . . . 11  wff  ( x r y  /\  y
r z )
2815, 25, 10wbr 4653 . . . . . . . . . . 11  wff  x r z
2927, 28wi 4 . . . . . . . . . 10  wff  ( ( x r y  /\  y r z )  ->  x r z )
3016, 23, 29w3a 1037 . . . . . . . . 9  wff  ( x r x  /\  (
( x r y  /\  y r x )  ->  x  =  y )  /\  (
( x r y  /\  y r z )  ->  x r
z ) )
3130, 24, 3wral 2912 . . . . . . . 8  wff  A. z  e.  b  ( x
r x  /\  (
( x r y  /\  y r x )  ->  x  =  y )  /\  (
( x r y  /\  y r z )  ->  x r
z ) )
3231, 17, 3wral 2912 . . . . . . 7  wff  A. y  e.  b  A. z  e.  b  ( x
r x  /\  (
( x r y  /\  y r x )  ->  x  =  y )  /\  (
( x r y  /\  y r z )  ->  x r
z ) )
3332, 14, 3wral 2912 . . . . . 6  wff  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x
r x  /\  (
( x r y  /\  y r x )  ->  x  =  y )  /\  (
( x r y  /\  y r z )  ->  x r
z ) )
348, 13, 33w3a 1037 . . . . 5  wff  ( b  =  ( Base `  f
)  /\  r  =  ( le `  f )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) )
3534, 9wex 1704 . . . 4  wff  E. r
( b  =  (
Base `  f )  /\  r  =  ( le `  f )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  (
x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) )
3635, 2wex 1704 . . 3  wff  E. b E. r ( b  =  ( Base `  f
)  /\  r  =  ( le `  f )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) )
3736, 4cab 2608 . 2  class  { f  |  E. b E. r ( b  =  ( Base `  f
)  /\  r  =  ( le `  f )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) ) }
381, 37wceq 1483 1  wff  Poset  =  {
f  |  E. b E. r ( b  =  ( Base `  f
)  /\  r  =  ( le `  f )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) ) }
Colors of variables: wff setvar class
This definition is referenced by:  ispos  16947
  Copyright terms: Public domain W3C validator