MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispos Structured version   Visualization version   Unicode version

Theorem ispos 16947
Description: The predicate "is a poset." (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.)
Hypotheses
Ref Expression
ispos.b  |-  B  =  ( Base `  K
)
ispos.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
ispos  |-  ( K  e.  Poset 
<->  ( K  e.  _V  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
Distinct variable groups:    x, y,
z, B    x,  .<_ , y, z
Allowed substitution hints:    K( x, y, z)

Proof of Theorem ispos
Dummy variables  p  b  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( p  =  K  ->  ( Base `  p )  =  ( Base `  K
) )
2 ispos.b . . . . . . 7  |-  B  =  ( Base `  K
)
31, 2syl6eqr 2674 . . . . . 6  |-  ( p  =  K  ->  ( Base `  p )  =  B )
43eqeq2d 2632 . . . . 5  |-  ( p  =  K  ->  (
b  =  ( Base `  p )  <->  b  =  B ) )
5 fveq2 6191 . . . . . . 7  |-  ( p  =  K  ->  ( le `  p )  =  ( le `  K
) )
6 ispos.l . . . . . . 7  |-  .<_  =  ( le `  K )
75, 6syl6eqr 2674 . . . . . 6  |-  ( p  =  K  ->  ( le `  p )  = 
.<_  )
87eqeq2d 2632 . . . . 5  |-  ( p  =  K  ->  (
r  =  ( le
`  p )  <->  r  =  .<_  ) )
94, 83anbi12d 1400 . . . 4  |-  ( p  =  K  ->  (
( b  =  (
Base `  p )  /\  r  =  ( le `  p )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  (
x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) )  <->  ( b  =  B  /\  r  = 
.<_  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) ) ) )
1092exbidv 1852 . . 3  |-  ( p  =  K  ->  ( E. b E. r ( b  =  ( Base `  p )  /\  r  =  ( le `  p )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  (
x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) )  <->  E. b E. r
( b  =  B  /\  r  =  .<_  /\ 
A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y
r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) ) ) )
11 df-poset 16946 . . 3  |-  Poset  =  {
p  |  E. b E. r ( b  =  ( Base `  p
)  /\  r  =  ( le `  p )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) ) }
1210, 11elab4g 3355 . 2  |-  ( K  e.  Poset 
<->  ( K  e.  _V  /\ 
E. b E. r
( b  =  B  /\  r  =  .<_  /\ 
A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y
r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) ) ) )
13 fvex 6201 . . . . 5  |-  ( Base `  K )  e.  _V
142, 13eqeltri 2697 . . . 4  |-  B  e. 
_V
15 fvex 6201 . . . . 5  |-  ( le
`  K )  e. 
_V
166, 15eqeltri 2697 . . . 4  |-  .<_  e.  _V
17 raleq 3138 . . . . . 6  |-  ( b  =  B  ->  ( A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <->  A. z  e.  B  ( x r x  /\  ( ( x r y  /\  y
r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) ) )
1817raleqbi1dv 3146 . . . . 5  |-  ( b  =  B  ->  ( A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <->  A. y  e.  B  A. z  e.  B  ( x r x  /\  ( ( x r y  /\  y
r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) ) )
1918raleqbi1dv 3146 . . . 4  |-  ( b  =  B  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x r x  /\  ( ( x r y  /\  y
r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) ) )
20 breq 4655 . . . . . . 7  |-  ( r  =  .<_  ->  ( x r x  <->  x  .<_  x ) )
21 breq 4655 . . . . . . . . 9  |-  ( r  =  .<_  ->  ( x r y  <->  x  .<_  y ) )
22 breq 4655 . . . . . . . . 9  |-  ( r  =  .<_  ->  ( y r x  <->  y  .<_  x ) )
2321, 22anbi12d 747 . . . . . . . 8  |-  ( r  =  .<_  ->  ( ( x r y  /\  y r x )  <-> 
( x  .<_  y  /\  y  .<_  x ) ) )
2423imbi1d 331 . . . . . . 7  |-  ( r  =  .<_  ->  ( ( ( x r y  /\  y r x )  ->  x  =  y )  <->  ( (
x  .<_  y  /\  y  .<_  x )  ->  x  =  y ) ) )
25 breq 4655 . . . . . . . . 9  |-  ( r  =  .<_  ->  ( y r z  <->  y  .<_  z ) )
2621, 25anbi12d 747 . . . . . . . 8  |-  ( r  =  .<_  ->  ( ( x r y  /\  y r z )  <-> 
( x  .<_  y  /\  y  .<_  z ) ) )
27 breq 4655 . . . . . . . 8  |-  ( r  =  .<_  ->  ( x r z  <->  x  .<_  z ) )
2826, 27imbi12d 334 . . . . . . 7  |-  ( r  =  .<_  ->  ( ( ( x r y  /\  y r z )  ->  x r
z )  <->  ( (
x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) )
2920, 24, 283anbi123d 1399 . . . . . 6  |-  ( r  =  .<_  ->  ( ( x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <-> 
( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
3029ralbidv 2986 . . . . 5  |-  ( r  =  .<_  ->  ( A. z  e.  B  (
x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <->  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
31302ralbidv 2989 . . . 4  |-  ( r  =  .<_  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
3214, 16, 19, 31ceqsex2v 3245 . . 3  |-  ( E. b E. r ( b  =  B  /\  r  =  .<_  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  (
x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) )
3332anbi2i 730 . 2  |-  ( ( K  e.  _V  /\  E. b E. r ( b  =  B  /\  r  =  .<_  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  (
x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) ) )  <->  ( K  e.  _V  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
3412, 33bitri 264 1  |-  ( K  e.  Poset 
<->  ( K  e.  _V  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   Posetcpo 16940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-poset 16946
This theorem is referenced by:  ispos2  16948  posi  16950  0pos  16954  isposd  16955  isposi  16956  pospropd  17134  resspos  29659
  Copyright terms: Public domain W3C validator