| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ispos | Structured version Visualization version Unicode version | ||
| Description: The predicate "is a poset." (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.) |
| Ref | Expression |
|---|---|
| ispos.b |
|
| ispos.l |
|
| Ref | Expression |
|---|---|
| ispos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . . . 7
| |
| 2 | ispos.b |
. . . . . . 7
| |
| 3 | 1, 2 | syl6eqr 2674 |
. . . . . 6
|
| 4 | 3 | eqeq2d 2632 |
. . . . 5
|
| 5 | fveq2 6191 |
. . . . . . 7
| |
| 6 | ispos.l |
. . . . . . 7
| |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . . 6
|
| 8 | 7 | eqeq2d 2632 |
. . . . 5
|
| 9 | 4, 8 | 3anbi12d 1400 |
. . . 4
|
| 10 | 9 | 2exbidv 1852 |
. . 3
|
| 11 | df-poset 16946 |
. . 3
| |
| 12 | 10, 11 | elab4g 3355 |
. 2
|
| 13 | fvex 6201 |
. . . . 5
| |
| 14 | 2, 13 | eqeltri 2697 |
. . . 4
|
| 15 | fvex 6201 |
. . . . 5
| |
| 16 | 6, 15 | eqeltri 2697 |
. . . 4
|
| 17 | raleq 3138 |
. . . . . 6
| |
| 18 | 17 | raleqbi1dv 3146 |
. . . . 5
|
| 19 | 18 | raleqbi1dv 3146 |
. . . 4
|
| 20 | breq 4655 |
. . . . . . 7
| |
| 21 | breq 4655 |
. . . . . . . . 9
| |
| 22 | breq 4655 |
. . . . . . . . 9
| |
| 23 | 21, 22 | anbi12d 747 |
. . . . . . . 8
|
| 24 | 23 | imbi1d 331 |
. . . . . . 7
|
| 25 | breq 4655 |
. . . . . . . . 9
| |
| 26 | 21, 25 | anbi12d 747 |
. . . . . . . 8
|
| 27 | breq 4655 |
. . . . . . . 8
| |
| 28 | 26, 27 | imbi12d 334 |
. . . . . . 7
|
| 29 | 20, 24, 28 | 3anbi123d 1399 |
. . . . . 6
|
| 30 | 29 | ralbidv 2986 |
. . . . 5
|
| 31 | 30 | 2ralbidv 2989 |
. . . 4
|
| 32 | 14, 16, 19, 31 | ceqsex2v 3245 |
. . 3
|
| 33 | 32 | anbi2i 730 |
. 2
|
| 34 | 12, 33 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-poset 16946 |
| This theorem is referenced by: ispos2 16948 posi 16950 0pos 16954 isposd 16955 isposi 16956 pospropd 17134 resspos 29659 |
| Copyright terms: Public domain | W3C validator |