![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-prmo | Structured version Visualization version Unicode version |
Description: Define the primorial
function on nonnegative integers as the product of
all prime numbers less than or equal to the integer. For example,
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
In the literature, the primorial function is written as a postscript
hash: 6# = 30. In contrast to prmorcht 24904, where the primorial function
is defined by using the sequence builder ( |
Ref | Expression |
---|---|
df-prmo |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cprmo 15735 |
. 2
![]() | |
2 | vn |
. . 3
![]() ![]() | |
3 | cn0 11292 |
. . 3
![]() ![]() | |
4 | c1 9937 |
. . . . 5
![]() ![]() | |
5 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
6 | cfz 12326 |
. . . . 5
![]() ![]() | |
7 | 4, 5, 6 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
8 | vk |
. . . . . . 7
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . 6
![]() ![]() |
10 | cprime 15385 |
. . . . . 6
![]() ![]() | |
11 | 9, 10 | wcel 1990 |
. . . . 5
![]() ![]() ![]() ![]() |
12 | 11, 9, 4 | cif 4086 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 7, 12, 8 | cprod 14635 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 2, 3, 13 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 14 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: prmoval 15737 |
Copyright terms: Public domain | W3C validator |