| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-prmo | Structured version Visualization version GIF version | ||
| Description: Define the primorial
function on nonnegative integers as the product of
all prime numbers less than or equal to the integer. For example,
(#p‘10) = 2 · 3 · 5
· 7 = 210 (see ex-prmo 27316).
In the literature, the primorial function is written as a postscript hash: 6# = 30. In contrast to prmorcht 24904, where the primorial function is defined by using the sequence builder (𝑃 = seq1( · , 𝐹)), the more specialized definition of a product of a series is used here. (Contributed by AV, 28-Aug-2020.) |
| Ref | Expression |
|---|---|
| df-prmo | ⊢ #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cprmo 15735 | . 2 class #p | |
| 2 | vn | . . 3 setvar 𝑛 | |
| 3 | cn0 11292 | . . 3 class ℕ0 | |
| 4 | c1 9937 | . . . . 5 class 1 | |
| 5 | 2 | cv 1482 | . . . . 5 class 𝑛 |
| 6 | cfz 12326 | . . . . 5 class ... | |
| 7 | 4, 5, 6 | co 6650 | . . . 4 class (1...𝑛) |
| 8 | vk | . . . . . . 7 setvar 𝑘 | |
| 9 | 8 | cv 1482 | . . . . . 6 class 𝑘 |
| 10 | cprime 15385 | . . . . . 6 class ℙ | |
| 11 | 9, 10 | wcel 1990 | . . . . 5 wff 𝑘 ∈ ℙ |
| 12 | 11, 9, 4 | cif 4086 | . . . 4 class if(𝑘 ∈ ℙ, 𝑘, 1) |
| 13 | 7, 12, 8 | cprod 14635 | . . 3 class ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) |
| 14 | 2, 3, 13 | cmpt 4729 | . 2 class (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) |
| 15 | 1, 14 | wceq 1483 | 1 wff #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: prmoval 15737 |
| Copyright terms: Public domain | W3C validator |