![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-q | Structured version Visualization version Unicode version |
Description: Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 11790 for the relation "is rational." (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
df-q |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cq 11788 |
. 2
![]() ![]() | |
2 | cdiv 10684 |
. . 3
![]() ![]() | |
3 | cz 11377 |
. . . 4
![]() ![]() | |
4 | cn 11020 |
. . . 4
![]() ![]() | |
5 | 3, 4 | cxp 5112 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | cima 5117 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: elq 11790 |
Copyright terms: Public domain | W3C validator |