MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q Structured version   Visualization version   Unicode version

Definition df-q 11789
Description: Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 11790 for the relation "is rational." (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
df-q  |-  QQ  =  (  /  " ( ZZ 
X.  NN ) )

Detailed syntax breakdown of Definition df-q
StepHypRef Expression
1 cq 11788 . 2  class  QQ
2 cdiv 10684 . . 3  class  /
3 cz 11377 . . . 4  class  ZZ
4 cn 11020 . . . 4  class  NN
53, 4cxp 5112 . . 3  class  ( ZZ 
X.  NN )
62, 5cima 5117 . 2  class  (  /  " ( ZZ  X.  NN ) )
71, 6wceq 1483 1  wff  QQ  =  (  /  " ( ZZ 
X.  NN ) )
Colors of variables: wff setvar class
This definition is referenced by:  elq  11790
  Copyright terms: Public domain W3C validator