![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rrx | Structured version Visualization version Unicode version |
Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
df-rrx |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crrx 23171 |
. 2
![]() | |
2 | vi |
. . 3
![]() ![]() | |
3 | cvv 3200 |
. . 3
![]() ![]() | |
4 | crefld 19950 |
. . . . 5
![]() | |
5 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
6 | cfrlm 20090 |
. . . . 5
![]() | |
7 | 4, 5, 6 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() |
8 | ctch 22967 |
. . . 4
![]() | |
9 | 7, 8 | cfv 5888 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 2, 3, 9 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: rrxval 23175 |
Copyright terms: Public domain | W3C validator |