![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rrx | Structured version Visualization version GIF version |
Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
df-rrx | ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂHil‘(ℝfld freeLMod 𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crrx 23171 | . 2 class ℝ^ | |
2 | vi | . . 3 setvar 𝑖 | |
3 | cvv 3200 | . . 3 class V | |
4 | crefld 19950 | . . . . 5 class ℝfld | |
5 | 2 | cv 1482 | . . . . 5 class 𝑖 |
6 | cfrlm 20090 | . . . . 5 class freeLMod | |
7 | 4, 5, 6 | co 6650 | . . . 4 class (ℝfld freeLMod 𝑖) |
8 | ctch 22967 | . . . 4 class toℂHil | |
9 | 7, 8 | cfv 5888 | . . 3 class (toℂHil‘(ℝfld freeLMod 𝑖)) |
10 | 2, 3, 9 | cmpt 4729 | . 2 class (𝑖 ∈ V ↦ (toℂHil‘(ℝfld freeLMod 𝑖))) |
11 | 1, 10 | wceq 1483 | 1 wff ℝ^ = (𝑖 ∈ V ↦ (toℂHil‘(ℝfld freeLMod 𝑖))) |
Colors of variables: wff setvar class |
This definition is referenced by: rrxval 23175 |
Copyright terms: Public domain | W3C validator |