MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rrx Structured version   Visualization version   GIF version

Definition df-rrx 23173
Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
df-rrx ℝ^ = (𝑖 ∈ V ↦ (toℂHil‘(ℝfld freeLMod 𝑖)))

Detailed syntax breakdown of Definition df-rrx
StepHypRef Expression
1 crrx 23171 . 2 class ℝ^
2 vi . . 3 setvar 𝑖
3 cvv 3200 . . 3 class V
4 crefld 19950 . . . . 5 class fld
52cv 1482 . . . . 5 class 𝑖
6 cfrlm 20090 . . . . 5 class freeLMod
74, 5, 6co 6650 . . . 4 class (ℝfld freeLMod 𝑖)
8 ctch 22967 . . . 4 class toℂHil
97, 8cfv 5888 . . 3 class (toℂHil‘(ℝfld freeLMod 𝑖))
102, 3, 9cmpt 4729 . 2 class (𝑖 ∈ V ↦ (toℂHil‘(ℝfld freeLMod 𝑖)))
111, 10wceq 1483 1 wff ℝ^ = (𝑖 ∈ V ↦ (toℂHil‘(ℝfld freeLMod 𝑖)))
Colors of variables: wff setvar class
This definition is referenced by:  rrxval  23175
  Copyright terms: Public domain W3C validator