Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-spr Structured version   Visualization version   Unicode version

Definition df-spr 41728
Description: Define the function which maps a set  v to the set of pairs consisting of elements of the set  v. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
df-spr  |- Pairs  =  ( v  e.  _V  |->  { p  |  E. a  e.  v  E. b  e.  v  p  =  { a ,  b } } )
Distinct variable group:    a, b, p, v

Detailed syntax breakdown of Definition df-spr
StepHypRef Expression
1 cspr 41727 . 2  class Pairs
2 vv . . 3  setvar  v
3 cvv 3200 . . 3  class  _V
4 vp . . . . . . . 8  setvar  p
54cv 1482 . . . . . . 7  class  p
6 va . . . . . . . . 9  setvar  a
76cv 1482 . . . . . . . 8  class  a
8 vb . . . . . . . . 9  setvar  b
98cv 1482 . . . . . . . 8  class  b
107, 9cpr 4179 . . . . . . 7  class  { a ,  b }
115, 10wceq 1483 . . . . . 6  wff  p  =  { a ,  b }
122cv 1482 . . . . . 6  class  v
1311, 8, 12wrex 2913 . . . . 5  wff  E. b  e.  v  p  =  { a ,  b }
1413, 6, 12wrex 2913 . . . 4  wff  E. a  e.  v  E. b  e.  v  p  =  { a ,  b }
1514, 4cab 2608 . . 3  class  { p  |  E. a  e.  v  E. b  e.  v  p  =  { a ,  b } }
162, 3, 15cmpt 4729 . 2  class  ( v  e.  _V  |->  { p  |  E. a  e.  v  E. b  e.  v  p  =  { a ,  b } }
)
171, 16wceq 1483 1  wff Pairs  =  ( v  e.  _V  |->  { p  |  E. a  e.  v  E. b  e.  v  p  =  { a ,  b } } )
Colors of variables: wff setvar class
This definition is referenced by:  sprval  41729
  Copyright terms: Public domain W3C validator