Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprval Structured version   Visualization version   Unicode version

Theorem sprval 41729
Description: The set of all unordered pairs over a given set  V. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprval  |-  ( V  e.  W  ->  (Pairs `  V )  =  {
p  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } } )
Distinct variable groups:    V, a,
b, p    W, a,
b, p

Proof of Theorem sprval
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 df-spr 41728 . . 3  |- Pairs  =  ( v  e.  _V  |->  { p  |  E. a  e.  v  E. b  e.  v  p  =  { a ,  b } } )
21a1i 11 . 2  |-  ( V  e.  W  -> Pairs  =  ( v  e.  _V  |->  { p  |  E. a  e.  v  E. b  e.  v  p  =  { a ,  b } } ) )
3 id 22 . . . . 5  |-  ( v  =  V  ->  v  =  V )
4 rexeq 3139 . . . . 5  |-  ( v  =  V  ->  ( E. b  e.  v  p  =  { a ,  b }  <->  E. b  e.  V  p  =  { a ,  b } ) )
53, 4rexeqbidv 3153 . . . 4  |-  ( v  =  V  ->  ( E. a  e.  v  E. b  e.  v  p  =  { a ,  b }  <->  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) )
65adantl 482 . . 3  |-  ( ( V  e.  W  /\  v  =  V )  ->  ( E. a  e.  v  E. b  e.  v  p  =  {
a ,  b }  <->  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } ) )
76abbidv 2741 . 2  |-  ( ( V  e.  W  /\  v  =  V )  ->  { p  |  E. a  e.  v  E. b  e.  v  p  =  { a ,  b } }  =  {
p  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } } )
8 elex 3212 . 2  |-  ( V  e.  W  ->  V  e.  _V )
9 zfpair2 4907 . . . . . . . 8  |-  { a ,  b }  e.  _V
10 eueq 3378 . . . . . . . 8  |-  ( { a ,  b }  e.  _V  <->  E! p  p  =  { a ,  b } )
119, 10mpbi 220 . . . . . . 7  |-  E! p  p  =  { a ,  b }
12 euabex 4929 . . . . . . 7  |-  ( E! p  p  =  {
a ,  b }  ->  { p  |  p  =  { a ,  b } }  e.  _V )
1311, 12mp1i 13 . . . . . 6  |-  ( V  e.  W  ->  { p  |  p  =  {
a ,  b } }  e.  _V )
1413ralrimivw 2967 . . . . 5  |-  ( V  e.  W  ->  A. b  e.  V  { p  |  p  =  {
a ,  b } }  e.  _V )
15 abrexex2g 7144 . . . . 5  |-  ( ( V  e.  W  /\  A. b  e.  V  {
p  |  p  =  { a ,  b } }  e.  _V )  ->  { p  |  E. b  e.  V  p  =  { a ,  b } }  e.  _V )
1614, 15mpdan 702 . . . 4  |-  ( V  e.  W  ->  { p  |  E. b  e.  V  p  =  { a ,  b } }  e.  _V )
1716ralrimivw 2967 . . 3  |-  ( V  e.  W  ->  A. a  e.  V  { p  |  E. b  e.  V  p  =  { a ,  b } }  e.  _V )
18 abrexex2g 7144 . . 3  |-  ( ( V  e.  W  /\  A. a  e.  V  {
p  |  E. b  e.  V  p  =  { a ,  b } }  e.  _V )  ->  { p  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } }  e.  _V )
1917, 18mpdan 702 . 2  |-  ( V  e.  W  ->  { p  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } }  e.  _V )
202, 7, 8, 19fvmptd 6288 1  |-  ( V  e.  W  ->  (Pairs `  V )  =  {
p  |  E. a  e.  V  E. b  e.  V  p  =  { a ,  b } } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E!weu 2470   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200   {cpr 4179    |-> cmpt 4729   ` cfv 5888  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-spr 41728
This theorem is referenced by:  sprvalpw  41730  sprssspr  41731
  Copyright terms: Public domain W3C validator