| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-srng | Structured version Visualization version Unicode version | ||
| Description: Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in [Holland95] p. 204. (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-srng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csr 18844 |
. 2
| |
| 2 | vi |
. . . . . . 7
| |
| 3 | 2 | cv 1482 |
. . . . . 6
|
| 4 | vf |
. . . . . . . 8
| |
| 5 | 4 | cv 1482 |
. . . . . . 7
|
| 6 | coppr 18622 |
. . . . . . . 8
| |
| 7 | 5, 6 | cfv 5888 |
. . . . . . 7
|
| 8 | crh 18712 |
. . . . . . 7
| |
| 9 | 5, 7, 8 | co 6650 |
. . . . . 6
|
| 10 | 3, 9 | wcel 1990 |
. . . . 5
|
| 11 | 3 | ccnv 5113 |
. . . . . 6
|
| 12 | 3, 11 | wceq 1483 |
. . . . 5
|
| 13 | 10, 12 | wa 384 |
. . . 4
|
| 14 | cstf 18843 |
. . . . 5
| |
| 15 | 5, 14 | cfv 5888 |
. . . 4
|
| 16 | 13, 2, 15 | wsbc 3435 |
. . 3
|
| 17 | 16, 4 | cab 2608 |
. 2
|
| 18 | 1, 17 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: issrng 18850 |
| Copyright terms: Public domain | W3C validator |