MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  staffval Structured version   Visualization version   Unicode version

Theorem staffval 18847
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
staffval.b  |-  B  =  ( Base `  R
)
staffval.i  |-  .*  =  ( *r `  R )
staffval.f  |-  .xb  =  ( *rf `  R )
Assertion
Ref Expression
staffval  |-  .xb  =  ( x  e.  B  |->  (  .*  `  x
) )
Distinct variable groups:    x, B    x,  .*    x, R
Allowed substitution hint:    .xb ( x)

Proof of Theorem staffval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 staffval.f . 2  |-  .xb  =  ( *rf `  R )
2 fveq2 6191 . . . . . 6  |-  ( f  =  R  ->  ( Base `  f )  =  ( Base `  R
) )
3 staffval.b . . . . . 6  |-  B  =  ( Base `  R
)
42, 3syl6eqr 2674 . . . . 5  |-  ( f  =  R  ->  ( Base `  f )  =  B )
5 fveq2 6191 . . . . . . 7  |-  ( f  =  R  ->  (
*r `  f
)  =  ( *r `  R ) )
6 staffval.i . . . . . . 7  |-  .*  =  ( *r `  R )
75, 6syl6eqr 2674 . . . . . 6  |-  ( f  =  R  ->  (
*r `  f
)  =  .*  )
87fveq1d 6193 . . . . 5  |-  ( f  =  R  ->  (
( *r `  f ) `  x
)  =  (  .* 
`  x ) )
94, 8mpteq12dv 4733 . . . 4  |-  ( f  =  R  ->  (
x  e.  ( Base `  f )  |->  ( ( *r `  f
) `  x )
)  =  ( x  e.  B  |->  (  .* 
`  x ) ) )
10 df-staf 18845 . . . 4  |-  *rf  =  ( f  e.  _V  |->  ( x  e.  ( Base `  f
)  |->  ( ( *r `  f ) `
 x ) ) )
11 eqid 2622 . . . . . 6  |-  ( x  e.  B  |->  (  .* 
`  x ) )  =  ( x  e.  B  |->  (  .*  `  x ) )
12 fvrn0 6216 . . . . . . 7  |-  (  .* 
`  x )  e.  ( ran  .*  u.  {
(/) } )
1312a1i 11 . . . . . 6  |-  ( x  e.  B  ->  (  .*  `  x )  e.  ( ran  .*  u.  {
(/) } ) )
1411, 13fmpti 6383 . . . . 5  |-  ( x  e.  B  |->  (  .* 
`  x ) ) : B --> ( ran 
.*  u.  { (/) } )
15 fvex 6201 . . . . . 6  |-  ( Base `  R )  e.  _V
163, 15eqeltri 2697 . . . . 5  |-  B  e. 
_V
17 fvex 6201 . . . . . . . 8  |-  ( *r `  R )  e.  _V
186, 17eqeltri 2697 . . . . . . 7  |-  .*  e.  _V
1918rnex 7100 . . . . . 6  |-  ran  .*  e.  _V
20 p0ex 4853 . . . . . 6  |-  { (/) }  e.  _V
2119, 20unex 6956 . . . . 5  |-  ( ran 
.*  u.  { (/) } )  e.  _V
22 fex2 7121 . . . . 5  |-  ( ( ( x  e.  B  |->  (  .*  `  x
) ) : B --> ( ran  .*  u.  { (/)
} )  /\  B  e.  _V  /\  ( ran 
.*  u.  { (/) } )  e.  _V )  -> 
( x  e.  B  |->  (  .*  `  x
) )  e.  _V )
2314, 16, 21, 22mp3an 1424 . . . 4  |-  ( x  e.  B  |->  (  .* 
`  x ) )  e.  _V
249, 10, 23fvmpt 6282 . . 3  |-  ( R  e.  _V  ->  (
*rf `  R )  =  ( x  e.  B  |->  (  .*  `  x ) ) )
25 fvprc 6185 . . . . 5  |-  ( -.  R  e.  _V  ->  ( *rf `  R )  =  (/) )
26 mpt0 6021 . . . . 5  |-  ( x  e.  (/)  |->  (  .*  `  x ) )  =  (/)
2725, 26syl6eqr 2674 . . . 4  |-  ( -.  R  e.  _V  ->  ( *rf `  R )  =  ( x  e.  (/)  |->  (  .* 
`  x ) ) )
28 fvprc 6185 . . . . . 6  |-  ( -.  R  e.  _V  ->  (
Base `  R )  =  (/) )
293, 28syl5eq 2668 . . . . 5  |-  ( -.  R  e.  _V  ->  B  =  (/) )
3029mpteq1d 4738 . . . 4  |-  ( -.  R  e.  _V  ->  ( x  e.  B  |->  (  .*  `  x ) )  =  ( x  e.  (/)  |->  (  .*  `  x ) ) )
3127, 30eqtr4d 2659 . . 3  |-  ( -.  R  e.  _V  ->  ( *rf `  R )  =  ( x  e.  B  |->  (  .*  `  x ) ) )
3224, 31pm2.61i 176 . 2  |-  ( *rf `  R
)  =  ( x  e.  B  |->  (  .* 
`  x ) )
331, 32eqtri 2644 1  |-  .xb  =  ( x  e.  B  |->  (  .*  `  x
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   (/)c0 3915   {csn 4177    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888   Basecbs 15857   *rcstv 15943   *rfcstf 18843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-staf 18845
This theorem is referenced by:  stafval  18848  staffn  18849  issrngd  18861
  Copyright terms: Public domain W3C validator