![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tdrg | Structured version Visualization version Unicode version |
Description: Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
df-tdrg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctdrg 21960 |
. 2
![]() | |
2 | vr |
. . . . . . 7
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
4 | cmgp 18489 |
. . . . . 6
![]() | |
5 | 3, 4 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
6 | cui 18639 |
. . . . . 6
![]() | |
7 | 3, 6 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
8 | cress 15858 |
. . . . 5
![]() | |
9 | 5, 7, 8 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | ctgp 21875 |
. . . 4
![]() ![]() | |
11 | 9, 10 | wcel 1990 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | ctrg 21959 |
. . . 4
![]() ![]() | |
13 | cdr 18747 |
. . . 4
![]() ![]() | |
14 | 12, 13 | cin 3573 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
15 | 11, 2, 14 | crab 2916 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 1, 15 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: istdrg 21969 |
Copyright terms: Public domain | W3C validator |