![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tlm | Structured version Visualization version Unicode version |
Description: Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
df-tlm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctlm 21961 |
. 2
![]() | |
2 | vw |
. . . . . . 7
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
4 | csca 15944 |
. . . . . 6
![]() | |
5 | 3, 4 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
6 | ctrg 21959 |
. . . . 5
![]() ![]() | |
7 | 5, 6 | wcel 1990 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | cscaf 18864 |
. . . . . 6
![]() ![]() ![]() | |
9 | 3, 8 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | ctopn 16082 |
. . . . . . . 8
![]() ![]() | |
11 | 5, 10 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 3, 10 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
13 | ctx 21363 |
. . . . . . 7
![]() ![]() | |
14 | 11, 12, 13 | co 6650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | ccn 21028 |
. . . . . 6
![]() ![]() | |
16 | 14, 12, 15 | co 6650 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 9, 16 | wcel 1990 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 7, 17 | wa 384 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | ctmd 21874 |
. . . 4
![]() | |
20 | clmod 18863 |
. . . 4
![]() ![]() | |
21 | 19, 20 | cin 3573 |
. . 3
![]() ![]() ![]() ![]() ![]() |
22 | 18, 2, 21 | crab 2916 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 1, 22 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: istlm 21988 |
Copyright terms: Public domain | W3C validator |