| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tlm | Structured version Visualization version Unicode version | ||
| Description: Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-tlm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctlm 21961 |
. 2
| |
| 2 | vw |
. . . . . . 7
| |
| 3 | 2 | cv 1482 |
. . . . . 6
|
| 4 | csca 15944 |
. . . . . 6
| |
| 5 | 3, 4 | cfv 5888 |
. . . . 5
|
| 6 | ctrg 21959 |
. . . . 5
| |
| 7 | 5, 6 | wcel 1990 |
. . . 4
|
| 8 | cscaf 18864 |
. . . . . 6
| |
| 9 | 3, 8 | cfv 5888 |
. . . . 5
|
| 10 | ctopn 16082 |
. . . . . . . 8
| |
| 11 | 5, 10 | cfv 5888 |
. . . . . . 7
|
| 12 | 3, 10 | cfv 5888 |
. . . . . . 7
|
| 13 | ctx 21363 |
. . . . . . 7
| |
| 14 | 11, 12, 13 | co 6650 |
. . . . . 6
|
| 15 | ccn 21028 |
. . . . . 6
| |
| 16 | 14, 12, 15 | co 6650 |
. . . . 5
|
| 17 | 9, 16 | wcel 1990 |
. . . 4
|
| 18 | 7, 17 | wa 384 |
. . 3
|
| 19 | ctmd 21874 |
. . . 4
| |
| 20 | clmod 18863 |
. . . 4
| |
| 21 | 19, 20 | cin 3573 |
. . 3
|
| 22 | 18, 2, 21 | crab 2916 |
. 2
|
| 23 | 1, 22 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: istlm 21988 |
| Copyright terms: Public domain | W3C validator |