![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-tsk | Structured version Visualization version Unicode version |
Description: The class of all Tarski classes. Tarski classes is a phrase coined by Grzegorz Bancerek in his article Tarski's Classes and Ranks, Journal of Formalized Mathematics, Vol 1, No 3, May-August 1990. A Tarski class is a set whose existence is ensured by Tarski's axiom A (see ax-groth 9645 and the equivalent axioms). Axiom A was first presented in Tarski's article _Über unerreichbare Kardinalzahlen_. Tarski introduced the axiom A to enable ZFC to manage inaccessible cardinals. Later Grothendieck introduced the concept of Grothendieck universes and showed they were equal to transitive Tarski classes. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
df-tsk |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctsk 9570 |
. 2
![]() ![]() | |
2 | vz |
. . . . . . . . 9
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . . . . 8
![]() ![]() |
4 | 3 | cpw 4158 |
. . . . . . 7
![]() ![]() ![]() |
5 | vy |
. . . . . . . 8
![]() ![]() | |
6 | 5 | cv 1482 |
. . . . . . 7
![]() ![]() |
7 | 4, 6 | wss 3574 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
8 | vw |
. . . . . . . . 9
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . . . 8
![]() ![]() |
10 | 4, 9 | wss 3574 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
11 | 10, 8, 6 | wrex 2913 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | wa 384 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12, 2, 6 | wral 2912 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | cen 7952 |
. . . . . . 7
![]() ![]() | |
15 | 3, 6, 14 | wbr 4653 |
. . . . . 6
![]() ![]() ![]() ![]() |
16 | 2, 5 | wel 1991 |
. . . . . 6
![]() ![]() ![]() ![]() |
17 | 15, 16 | wo 383 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 6 | cpw 4158 |
. . . . 5
![]() ![]() ![]() |
19 | 17, 2, 18 | wral 2912 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 13, 19 | wa 384 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20, 5 | cab 2608 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 1, 21 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: eltskg 9572 |
Copyright terms: Public domain | W3C validator |