![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-groth | Structured version Visualization version Unicode version |
Description: The Tarski-Grothendieck
Axiom. For every set ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ax-groth |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx |
. . . 4
![]() ![]() | |
2 | vy |
. . . 4
![]() ![]() | |
3 | 1, 2 | wel 1991 |
. . 3
![]() ![]() ![]() ![]() |
4 | vw |
. . . . . . . . 9
![]() ![]() | |
5 | 4 | cv 1482 |
. . . . . . . 8
![]() ![]() |
6 | vz |
. . . . . . . . 9
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . . . 8
![]() ![]() |
8 | 5, 7 | wss 3574 |
. . . . . . 7
![]() ![]() ![]() ![]() |
9 | 4, 2 | wel 1991 |
. . . . . . 7
![]() ![]() ![]() ![]() |
10 | 8, 9 | wi 4 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10, 4 | wal 1481 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | vv |
. . . . . . . . . 10
![]() ![]() | |
13 | 12 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
14 | 13, 7 | wss 3574 |
. . . . . . . 8
![]() ![]() ![]() ![]() |
15 | 12, 4 | wel 1991 |
. . . . . . . 8
![]() ![]() ![]() ![]() |
16 | 14, 15 | wi 4 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16, 12 | wal 1481 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
19 | 17, 4, 18 | wrex 2913 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 11, 19 | wa 384 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20, 6, 18 | wral 2912 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 7, 18 | wss 3574 |
. . . . 5
![]() ![]() ![]() ![]() |
23 | cen 7952 |
. . . . . . 7
![]() ![]() | |
24 | 7, 18, 23 | wbr 4653 |
. . . . . 6
![]() ![]() ![]() ![]() |
25 | 6, 2 | wel 1991 |
. . . . . 6
![]() ![]() ![]() ![]() |
26 | 24, 25 | wo 383 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 22, 26 | wi 4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 27, 6 | wal 1481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 3, 21, 28 | w3a 1037 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 29, 2 | wex 1704 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This axiom is referenced by: axgroth5 9646 axgroth2 9647 |
Copyright terms: Public domain | W3C validator |