| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-groth | Structured version Visualization version Unicode version | ||
| Description: The Tarski-Grothendieck
Axiom. For every set |
| Ref | Expression |
|---|---|
| ax-groth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx |
. . . 4
| |
| 2 | vy |
. . . 4
| |
| 3 | 1, 2 | wel 1991 |
. . 3
|
| 4 | vw |
. . . . . . . . 9
| |
| 5 | 4 | cv 1482 |
. . . . . . . 8
|
| 6 | vz |
. . . . . . . . 9
| |
| 7 | 6 | cv 1482 |
. . . . . . . 8
|
| 8 | 5, 7 | wss 3574 |
. . . . . . 7
|
| 9 | 4, 2 | wel 1991 |
. . . . . . 7
|
| 10 | 8, 9 | wi 4 |
. . . . . 6
|
| 11 | 10, 4 | wal 1481 |
. . . . 5
|
| 12 | vv |
. . . . . . . . . 10
| |
| 13 | 12 | cv 1482 |
. . . . . . . . 9
|
| 14 | 13, 7 | wss 3574 |
. . . . . . . 8
|
| 15 | 12, 4 | wel 1991 |
. . . . . . . 8
|
| 16 | 14, 15 | wi 4 |
. . . . . . 7
|
| 17 | 16, 12 | wal 1481 |
. . . . . 6
|
| 18 | 2 | cv 1482 |
. . . . . 6
|
| 19 | 17, 4, 18 | wrex 2913 |
. . . . 5
|
| 20 | 11, 19 | wa 384 |
. . . 4
|
| 21 | 20, 6, 18 | wral 2912 |
. . 3
|
| 22 | 7, 18 | wss 3574 |
. . . . 5
|
| 23 | cen 7952 |
. . . . . . 7
| |
| 24 | 7, 18, 23 | wbr 4653 |
. . . . . 6
|
| 25 | 6, 2 | wel 1991 |
. . . . . 6
|
| 26 | 24, 25 | wo 383 |
. . . . 5
|
| 27 | 22, 26 | wi 4 |
. . . 4
|
| 28 | 27, 6 | wal 1481 |
. . 3
|
| 29 | 3, 21, 28 | w3a 1037 |
. 2
|
| 30 | 29, 2 | wex 1704 |
1
|
| Colors of variables: wff setvar class |
| This axiom is referenced by: axgroth5 9646 axgroth2 9647 |
| Copyright terms: Public domain | W3C validator |