MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ttg Structured version   Visualization version   Unicode version

Definition df-ttg 25754
Description: Define a function converting a subcomplex Hilbert space to a Tarski Geometry. It does so by equipping the structure with a betweenness operation. Note that because the scalar product is applied over the interval  ( 0 [,] 1 ), only spaces whose scalar field is a superset of that interval can be considered. (Contributed by Thierry Arnoux, 24-Mar-2019.)
Assertion
Ref Expression
df-ttg  |- toTG  =  ( w  e.  _V  |->  [_ ( x  e.  ( Base `  w ) ,  y  e.  ( Base `  w )  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. ) )
Distinct variable group:    i, k, w, x, y, z

Detailed syntax breakdown of Definition df-ttg
StepHypRef Expression
1 cttg 25753 . 2  class toTG
2 vw . . 3  setvar  w
3 cvv 3200 . . 3  class  _V
4 vi . . . 4  setvar  i
5 vx . . . . 5  setvar  x
6 vy . . . . 5  setvar  y
72cv 1482 . . . . . 6  class  w
8 cbs 15857 . . . . . 6  class  Base
97, 8cfv 5888 . . . . 5  class  ( Base `  w )
10 vz . . . . . . . . . 10  setvar  z
1110cv 1482 . . . . . . . . 9  class  z
125cv 1482 . . . . . . . . 9  class  x
13 csg 17424 . . . . . . . . . 10  class  -g
147, 13cfv 5888 . . . . . . . . 9  class  ( -g `  w )
1511, 12, 14co 6650 . . . . . . . 8  class  ( z ( -g `  w
) x )
16 vk . . . . . . . . . 10  setvar  k
1716cv 1482 . . . . . . . . 9  class  k
186cv 1482 . . . . . . . . . 10  class  y
1918, 12, 14co 6650 . . . . . . . . 9  class  ( y ( -g `  w
) x )
20 cvsca 15945 . . . . . . . . . 10  class  .s
217, 20cfv 5888 . . . . . . . . 9  class  ( .s
`  w )
2217, 19, 21co 6650 . . . . . . . 8  class  ( k ( .s `  w
) ( y (
-g `  w )
x ) )
2315, 22wceq 1483 . . . . . . 7  wff  ( z ( -g `  w
) x )  =  ( k ( .s
`  w ) ( y ( -g `  w
) x ) )
24 cc0 9936 . . . . . . . 8  class  0
25 c1 9937 . . . . . . . 8  class  1
26 cicc 12178 . . . . . . . 8  class  [,]
2724, 25, 26co 6650 . . . . . . 7  class  ( 0 [,] 1 )
2823, 16, 27wrex 2913 . . . . . 6  wff  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) )
2928, 10, 9crab 2916 . . . . 5  class  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) }
305, 6, 9, 9, 29cmpt2 6652 . . . 4  class  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )
31 cnx 15854 . . . . . . . 8  class  ndx
32 citv 25335 . . . . . . . 8  class Itv
3331, 32cfv 5888 . . . . . . 7  class  (Itv `  ndx )
344cv 1482 . . . . . . 7  class  i
3533, 34cop 4183 . . . . . 6  class  <. (Itv ` 
ndx ) ,  i
>.
36 csts 15855 . . . . . 6  class sSet
377, 35, 36co 6650 . . . . 5  class  ( w sSet  <. (Itv `  ndx ) ,  i >. )
38 clng 25336 . . . . . . 7  class LineG
3931, 38cfv 5888 . . . . . 6  class  (LineG `  ndx )
4012, 18, 34co 6650 . . . . . . . . . 10  class  ( x i y )
4111, 40wcel 1990 . . . . . . . . 9  wff  z  e.  ( x i y )
4211, 18, 34co 6650 . . . . . . . . . 10  class  ( z i y )
4312, 42wcel 1990 . . . . . . . . 9  wff  x  e.  ( z i y )
4412, 11, 34co 6650 . . . . . . . . . 10  class  ( x i z )
4518, 44wcel 1990 . . . . . . . . 9  wff  y  e.  ( x i z )
4641, 43, 45w3o 1036 . . . . . . . 8  wff  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) )
4746, 10, 9crab 2916 . . . . . . 7  class  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) }
485, 6, 9, 9, 47cmpt2 6652 . . . . . 6  class  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
4939, 48cop 4183 . . . . 5  class  <. (LineG ` 
ndx ) ,  ( x  e.  ( Base `  w ) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>.
5037, 49, 36co 6650 . . . 4  class  ( ( w sSet  <. (Itv `  ndx ) ,  i >. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  (
Base `  w ) ,  y  e.  ( Base `  w )  |->  { z  e.  ( Base `  w )  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )
514, 30, 50csb 3533 . . 3  class  [_ (
x  e.  ( Base `  w ) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. )
522, 3, 51cmpt 4729 . 2  class  ( w  e.  _V  |->  [_ (
x  e.  ( Base `  w ) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. ) )
531, 52wceq 1483 1  wff toTG  =  ( w  e.  _V  |->  [_ ( x  e.  ( Base `  w ) ,  y  e.  ( Base `  w )  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. ) )
Colors of variables: wff setvar class
This definition is referenced by:  ttgval  25755
  Copyright terms: Public domain W3C validator