MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vtxdg Structured version   Visualization version   Unicode version

Definition df-vtxdg 26362
Description: Define the vertex degree function for a graph. To be appropriate for arbitrary hypergraphs, we have to double-count those edges that contain  u "twice" (i.e. self-loops), this being represented as a singleton as the edge's value. Since the degree of a vertex can be (positive) infinity (if the graph containing the vertex is not of finite size), the extended addition  +e is used for the summation of the number of "ordinary" edges" and the number of "loops". (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 9-Dec-2020.)
Assertion
Ref Expression
df-vtxdg  |- VtxDeg  =  ( g  e.  _V  |->  [_ (Vtx `  g )  / 
v ]_ [_ (iEdg `  g )  /  e ]_ ( u  e.  v 
|->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) ) )
Distinct variable group:    e, g, u, v, x

Detailed syntax breakdown of Definition df-vtxdg
StepHypRef Expression
1 cvtxdg 26361 . 2  class VtxDeg
2 vg . . 3  setvar  g
3 cvv 3200 . . 3  class  _V
4 vv . . . 4  setvar  v
52cv 1482 . . . . 5  class  g
6 cvtx 25874 . . . . 5  class Vtx
75, 6cfv 5888 . . . 4  class  (Vtx `  g )
8 ve . . . . 5  setvar  e
9 ciedg 25875 . . . . . 6  class iEdg
105, 9cfv 5888 . . . . 5  class  (iEdg `  g )
11 vu . . . . . 6  setvar  u
124cv 1482 . . . . . 6  class  v
1311cv 1482 . . . . . . . . . 10  class  u
14 vx . . . . . . . . . . . 12  setvar  x
1514cv 1482 . . . . . . . . . . 11  class  x
168cv 1482 . . . . . . . . . . 11  class  e
1715, 16cfv 5888 . . . . . . . . . 10  class  ( e `
 x )
1813, 17wcel 1990 . . . . . . . . 9  wff  u  e.  ( e `  x
)
1916cdm 5114 . . . . . . . . 9  class  dom  e
2018, 14, 19crab 2916 . . . . . . . 8  class  { x  e.  dom  e  |  u  e.  ( e `  x ) }
21 chash 13117 . . . . . . . 8  class  #
2220, 21cfv 5888 . . . . . . 7  class  ( # `  { x  e.  dom  e  |  u  e.  ( e `  x
) } )
2313csn 4177 . . . . . . . . . 10  class  { u }
2417, 23wceq 1483 . . . . . . . . 9  wff  ( e `
 x )  =  { u }
2524, 14, 19crab 2916 . . . . . . . 8  class  { x  e.  dom  e  |  ( e `  x )  =  { u } }
2625, 21cfv 5888 . . . . . . 7  class  ( # `  { x  e.  dom  e  |  ( e `  x )  =  {
u } } )
27 cxad 11944 . . . . . . 7  class  +e
2822, 26, 27co 6650 . . . . . 6  class  ( (
# `  { x  e.  dom  e  |  u  e.  ( e `  x ) } ) +e ( # `  { x  e.  dom  e  |  ( e `  x )  =  {
u } } ) )
2911, 12, 28cmpt 4729 . . . . 5  class  ( u  e.  v  |->  ( (
# `  { x  e.  dom  e  |  u  e.  ( e `  x ) } ) +e ( # `  { x  e.  dom  e  |  ( e `  x )  =  {
u } } ) ) )
308, 10, 29csb 3533 . . . 4  class  [_ (iEdg `  g )  /  e ]_ ( u  e.  v 
|->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) )
314, 7, 30csb 3533 . . 3  class  [_ (Vtx `  g )  /  v ]_ [_ (iEdg `  g
)  /  e ]_ ( u  e.  v  |->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) )
322, 3, 31cmpt 4729 . 2  class  ( g  e.  _V  |->  [_ (Vtx `  g )  /  v ]_ [_ (iEdg `  g
)  /  e ]_ ( u  e.  v  |->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) ) )
331, 32wceq 1483 1  wff VtxDeg  =  ( g  e.  _V  |->  [_ (Vtx `  g )  / 
v ]_ [_ (iEdg `  g )  /  e ]_ ( u  e.  v 
|->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  vtxdgfval  26363
  Copyright terms: Public domain W3C validator