MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgfval Structured version   Visualization version   Unicode version

Theorem vtxdgfval 26363
Description: The value of the vertex degree function. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 9-Dec-2020.)
Hypotheses
Ref Expression
vtxdgfval.v  |-  V  =  (Vtx `  G )
vtxdgfval.i  |-  I  =  (iEdg `  G )
vtxdgfval.a  |-  A  =  dom  I
Assertion
Ref Expression
vtxdgfval  |-  ( G  e.  W  ->  (VtxDeg `  G )  =  ( u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) ) )
Distinct variable groups:    x, u    x, A    u, G, x   
u, V
Allowed substitution hints:    A( u)    I( x, u)    V( x)    W( x, u)

Proof of Theorem vtxdgfval
Dummy variables  e 
g  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vtxdg 26362 . . 3  |- VtxDeg  =  ( g  e.  _V  |->  [_ (Vtx `  g )  / 
v ]_ [_ (iEdg `  g )  /  e ]_ ( u  e.  v 
|->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) ) )
21a1i 11 . 2  |-  ( G  e.  W  -> VtxDeg  =  ( g  e.  _V  |->  [_ (Vtx `  g )  / 
v ]_ [_ (iEdg `  g )  /  e ]_ ( u  e.  v 
|->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) ) ) )
3 fvex 6201 . . . 4  |-  (Vtx `  g )  e.  _V
4 fvex 6201 . . . 4  |-  (iEdg `  g )  e.  _V
5 simpl 473 . . . . 5  |-  ( ( v  =  (Vtx `  g )  /\  e  =  (iEdg `  g )
)  ->  v  =  (Vtx `  g ) )
6 dmeq 5324 . . . . . . . . 9  |-  ( e  =  (iEdg `  g
)  ->  dom  e  =  dom  (iEdg `  g
) )
7 fveq1 6190 . . . . . . . . . 10  |-  ( e  =  (iEdg `  g
)  ->  ( e `  x )  =  ( (iEdg `  g ) `  x ) )
87eleq2d 2687 . . . . . . . . 9  |-  ( e  =  (iEdg `  g
)  ->  ( u  e.  ( e `  x
)  <->  u  e.  (
(iEdg `  g ) `  x ) ) )
96, 8rabeqbidv 3195 . . . . . . . 8  |-  ( e  =  (iEdg `  g
)  ->  { x  e.  dom  e  |  u  e.  ( e `  x ) }  =  { x  e.  dom  (iEdg `  g )  |  u  e.  ( (iEdg `  g ) `  x
) } )
109fveq2d 6195 . . . . . . 7  |-  ( e  =  (iEdg `  g
)  ->  ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } )  =  (
# `  { x  e.  dom  (iEdg `  g
)  |  u  e.  ( (iEdg `  g
) `  x ) } ) )
117eqeq1d 2624 . . . . . . . . 9  |-  ( e  =  (iEdg `  g
)  ->  ( (
e `  x )  =  { u }  <->  ( (iEdg `  g ) `  x
)  =  { u } ) )
126, 11rabeqbidv 3195 . . . . . . . 8  |-  ( e  =  (iEdg `  g
)  ->  { x  e.  dom  e  |  ( e `  x )  =  { u } }  =  { x  e.  dom  (iEdg `  g
)  |  ( (iEdg `  g ) `  x
)  =  { u } } )
1312fveq2d 6195 . . . . . . 7  |-  ( e  =  (iEdg `  g
)  ->  ( # `  {
x  e.  dom  e  |  ( e `  x )  =  {
u } } )  =  ( # `  {
x  e.  dom  (iEdg `  g )  |  ( (iEdg `  g ) `  x )  =  {
u } } ) )
1410, 13oveq12d 6668 . . . . . 6  |-  ( e  =  (iEdg `  g
)  ->  ( ( # `
 { x  e. 
dom  e  |  u  e.  ( e `  x ) } ) +e ( # `  { x  e.  dom  e  |  ( e `  x )  =  {
u } } ) )  =  ( (
# `  { x  e.  dom  (iEdg `  g
)  |  u  e.  ( (iEdg `  g
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  g
)  |  ( (iEdg `  g ) `  x
)  =  { u } } ) ) )
1514adantl 482 . . . . 5  |-  ( ( v  =  (Vtx `  g )  /\  e  =  (iEdg `  g )
)  ->  ( ( # `
 { x  e. 
dom  e  |  u  e.  ( e `  x ) } ) +e ( # `  { x  e.  dom  e  |  ( e `  x )  =  {
u } } ) )  =  ( (
# `  { x  e.  dom  (iEdg `  g
)  |  u  e.  ( (iEdg `  g
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  g
)  |  ( (iEdg `  g ) `  x
)  =  { u } } ) ) )
165, 15mpteq12dv 4733 . . . 4  |-  ( ( v  =  (Vtx `  g )  /\  e  =  (iEdg `  g )
)  ->  ( u  e.  v  |->  ( (
# `  { x  e.  dom  e  |  u  e.  ( e `  x ) } ) +e ( # `  { x  e.  dom  e  |  ( e `  x )  =  {
u } } ) ) )  =  ( u  e.  (Vtx `  g )  |->  ( (
# `  { x  e.  dom  (iEdg `  g
)  |  u  e.  ( (iEdg `  g
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  g
)  |  ( (iEdg `  g ) `  x
)  =  { u } } ) ) ) )
173, 4, 16csbie2 3563 . . 3  |-  [_ (Vtx `  g )  /  v ]_ [_ (iEdg `  g
)  /  e ]_ ( u  e.  v  |->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) )  =  ( u  e.  (Vtx `  g )  |->  ( ( # `  {
x  e.  dom  (iEdg `  g )  |  u  e.  ( (iEdg `  g ) `  x
) } ) +e ( # `  {
x  e.  dom  (iEdg `  g )  |  ( (iEdg `  g ) `  x )  =  {
u } } ) ) )
18 fveq2 6191 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
19 vtxdgfval.v . . . . . 6  |-  V  =  (Vtx `  G )
2018, 19syl6eqr 2674 . . . . 5  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
21 fveq2 6191 . . . . . . . . . 10  |-  ( g  =  G  ->  (iEdg `  g )  =  (iEdg `  G ) )
2221dmeqd 5326 . . . . . . . . 9  |-  ( g  =  G  ->  dom  (iEdg `  g )  =  dom  (iEdg `  G
) )
23 vtxdgfval.a . . . . . . . . . 10  |-  A  =  dom  I
24 vtxdgfval.i . . . . . . . . . . 11  |-  I  =  (iEdg `  G )
2524dmeqi 5325 . . . . . . . . . 10  |-  dom  I  =  dom  (iEdg `  G
)
2623, 25eqtri 2644 . . . . . . . . 9  |-  A  =  dom  (iEdg `  G
)
2722, 26syl6eqr 2674 . . . . . . . 8  |-  ( g  =  G  ->  dom  (iEdg `  g )  =  A )
2821, 24syl6eqr 2674 . . . . . . . . . 10  |-  ( g  =  G  ->  (iEdg `  g )  =  I )
2928fveq1d 6193 . . . . . . . . 9  |-  ( g  =  G  ->  (
(iEdg `  g ) `  x )  =  ( I `  x ) )
3029eleq2d 2687 . . . . . . . 8  |-  ( g  =  G  ->  (
u  e.  ( (iEdg `  g ) `  x
)  <->  u  e.  (
I `  x )
) )
3127, 30rabeqbidv 3195 . . . . . . 7  |-  ( g  =  G  ->  { x  e.  dom  (iEdg `  g
)  |  u  e.  ( (iEdg `  g
) `  x ) }  =  { x  e.  A  |  u  e.  ( I `  x
) } )
3231fveq2d 6195 . . . . . 6  |-  ( g  =  G  ->  ( # `
 { x  e. 
dom  (iEdg `  g )  |  u  e.  (
(iEdg `  g ) `  x ) } )  =  ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) )
3329eqeq1d 2624 . . . . . . . 8  |-  ( g  =  G  ->  (
( (iEdg `  g
) `  x )  =  { u }  <->  ( I `  x )  =  {
u } ) )
3427, 33rabeqbidv 3195 . . . . . . 7  |-  ( g  =  G  ->  { x  e.  dom  (iEdg `  g
)  |  ( (iEdg `  g ) `  x
)  =  { u } }  =  {
x  e.  A  | 
( I `  x
)  =  { u } } )
3534fveq2d 6195 . . . . . 6  |-  ( g  =  G  ->  ( # `
 { x  e. 
dom  (iEdg `  g )  |  ( (iEdg `  g ) `  x
)  =  { u } } )  =  (
# `  { x  e.  A  |  (
I `  x )  =  { u } }
) )
3632, 35oveq12d 6668 . . . . 5  |-  ( g  =  G  ->  (
( # `  { x  e.  dom  (iEdg `  g
)  |  u  e.  ( (iEdg `  g
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  g
)  |  ( (iEdg `  g ) `  x
)  =  { u } } ) )  =  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) )
3720, 36mpteq12dv 4733 . . . 4  |-  ( g  =  G  ->  (
u  e.  (Vtx `  g )  |->  ( (
# `  { x  e.  dom  (iEdg `  g
)  |  u  e.  ( (iEdg `  g
) `  x ) } ) +e
( # `  { x  e.  dom  (iEdg `  g
)  |  ( (iEdg `  g ) `  x
)  =  { u } } ) ) )  =  ( u  e.  V  |->  ( ( # `  { x  e.  A  |  u  e.  (
I `  x ) } ) +e
( # `  { x  e.  A  |  (
I `  x )  =  { u } }
) ) ) )
3837adantl 482 . . 3  |-  ( ( G  e.  W  /\  g  =  G )  ->  ( u  e.  (Vtx
`  g )  |->  ( ( # `  {
x  e.  dom  (iEdg `  g )  |  u  e.  ( (iEdg `  g ) `  x
) } ) +e ( # `  {
x  e.  dom  (iEdg `  g )  |  ( (iEdg `  g ) `  x )  =  {
u } } ) ) )  =  ( u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) ) )
3917, 38syl5eq 2668 . 2  |-  ( ( G  e.  W  /\  g  =  G )  ->  [_ (Vtx `  g
)  /  v ]_ [_ (iEdg `  g )  /  e ]_ (
u  e.  v  |->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) )  =  ( u  e.  V  |->  ( ( # `  { x  e.  A  |  u  e.  (
I `  x ) } ) +e
( # `  { x  e.  A  |  (
I `  x )  =  { u } }
) ) ) )
40 elex 3212 . 2  |-  ( G  e.  W  ->  G  e.  _V )
41 fvex 6201 . . . 4  |-  (Vtx `  G )  e.  _V
4219, 41eqeltri 2697 . . 3  |-  V  e. 
_V
43 mptexg 6484 . . 3  |-  ( V  e.  _V  ->  (
u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) )  e.  _V )
4442, 43mp1i 13 . 2  |-  ( G  e.  W  ->  (
u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) )  e.  _V )
452, 39, 40, 44fvmptd 6288 1  |-  ( G  e.  W  ->  (VtxDeg `  G )  =  ( u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   [_csb 3533   {csn 4177    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   +ecxad 11944   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-vtxdg 26362
This theorem is referenced by:  vtxdgval  26364  vtxdgop  26366  vtxdgf  26367  vtxdeqd  26373
  Copyright terms: Public domain W3C validator