![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-wdom | Structured version Visualization version Unicode version |
Description: A set is weakly dominated by a "larger" set iff the "larger" set can be mapped onto the "smaller" set or the smaller set is empty; equivalently if the smaller set can be placed into bijection with some partition of the larger set. When choice is assumed (as fodom 9344), this coincides with the 1-1 definition df-dom 7957; however, it is not known whether this is a choice-equivalent or a strictly weaker form. Some discussion of this question can be found at http://boolesrings.org/asafk/2014/on-the-partition-principle/. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
df-wdom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cwdom 8462 |
. 2
![]() ![]() | |
2 | vx |
. . . . . 6
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
4 | c0 3915 |
. . . . 5
![]() ![]() | |
5 | 3, 4 | wceq 1483 |
. . . 4
![]() ![]() ![]() ![]() |
6 | vy |
. . . . . . 7
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . 6
![]() ![]() |
8 | vz |
. . . . . . 7
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . 6
![]() ![]() |
10 | 7, 3, 9 | wfo 5886 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10, 8 | wex 1704 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 5, 11 | wo 383 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12, 2, 6 | copab 4712 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 1, 13 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: relwdom 8471 brwdom 8472 |
Copyright terms: Public domain | W3C validator |