MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom Structured version   Visualization version   Unicode version

Theorem brwdom 8472
Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
brwdom  |-  ( Y  e.  V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
Distinct variable groups:    z, X    z, Y
Allowed substitution hint:    V( z)

Proof of Theorem brwdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( Y  e.  V  ->  Y  e.  _V )
2 relwdom 8471 . . . . 5  |-  Rel  ~<_*
32brrelexi 5158 . . . 4  |-  ( X  ~<_*  Y  ->  X  e.  _V )
43a1i 11 . . 3  |-  ( Y  e.  _V  ->  ( X  ~<_*  Y  ->  X  e.  _V ) )
5 0ex 4790 . . . . . 6  |-  (/)  e.  _V
6 eleq1a 2696 . . . . . 6  |-  ( (/)  e.  _V  ->  ( X  =  (/)  ->  X  e.  _V ) )
75, 6ax-mp 5 . . . . 5  |-  ( X  =  (/)  ->  X  e. 
_V )
8 forn 6118 . . . . . . 7  |-  ( z : Y -onto-> X  ->  ran  z  =  X
)
9 vex 3203 . . . . . . . 8  |-  z  e. 
_V
109rnex 7100 . . . . . . 7  |-  ran  z  e.  _V
118, 10syl6eqelr 2710 . . . . . 6  |-  ( z : Y -onto-> X  ->  X  e.  _V )
1211exlimiv 1858 . . . . 5  |-  ( E. z  z : Y -onto-> X  ->  X  e.  _V )
137, 12jaoi 394 . . . 4  |-  ( ( X  =  (/)  \/  E. z  z : Y -onto-> X )  ->  X  e.  _V )
1413a1i 11 . . 3  |-  ( Y  e.  _V  ->  (
( X  =  (/)  \/ 
E. z  z : Y -onto-> X )  ->  X  e.  _V ) )
15 eqeq1 2626 . . . . . 6  |-  ( x  =  X  ->  (
x  =  (/)  <->  X  =  (/) ) )
16 foeq3 6113 . . . . . . 7  |-  ( x  =  X  ->  (
z : y -onto-> x  <-> 
z : y -onto-> X ) )
1716exbidv 1850 . . . . . 6  |-  ( x  =  X  ->  ( E. z  z :
y -onto-> x  <->  E. z  z : y -onto-> X ) )
1815, 17orbi12d 746 . . . . 5  |-  ( x  =  X  ->  (
( x  =  (/)  \/ 
E. z  z : y -onto-> x )  <->  ( X  =  (/)  \/  E. z 
z : y -onto-> X ) ) )
19 foeq2 6112 . . . . . . 7  |-  ( y  =  Y  ->  (
z : y -onto-> X  <-> 
z : Y -onto-> X
) )
2019exbidv 1850 . . . . . 6  |-  ( y  =  Y  ->  ( E. z  z :
y -onto-> X  <->  E. z  z : Y -onto-> X ) )
2120orbi2d 738 . . . . 5  |-  ( y  =  Y  ->  (
( X  =  (/)  \/ 
E. z  z : y -onto-> X )  <->  ( X  =  (/)  \/  E. z 
z : Y -onto-> X
) ) )
22 df-wdom 8464 . . . . 5  |-  ~<_*  =  { <. x ,  y >.  |  ( x  =  (/)  \/  E. z  z : y
-onto-> x ) }
2318, 21, 22brabg 4994 . . . 4  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
2423expcom 451 . . 3  |-  ( Y  e.  _V  ->  ( X  e.  _V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) ) )
254, 14, 24pm5.21ndd 369 . 2  |-  ( Y  e.  _V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
261, 25syl 17 1  |-  ( Y  e.  V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   ran crn 5115   -onto->wfo 5886    ~<_* cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-fn 5891  df-fo 5894  df-wdom 8464
This theorem is referenced by:  brwdomi  8473  brwdomn0  8474  0wdom  8475  fowdom  8476  domwdom  8479  wdomnumr  8887
  Copyright terms: Public domain W3C validator