| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brwdom | Structured version Visualization version Unicode version | ||
| Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| brwdom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | relwdom 8471 |
. . . . 5
| |
| 3 | 2 | brrelexi 5158 |
. . . 4
|
| 4 | 3 | a1i 11 |
. . 3
|
| 5 | 0ex 4790 |
. . . . . 6
| |
| 6 | eleq1a 2696 |
. . . . . 6
| |
| 7 | 5, 6 | ax-mp 5 |
. . . . 5
|
| 8 | forn 6118 |
. . . . . . 7
| |
| 9 | vex 3203 |
. . . . . . . 8
| |
| 10 | 9 | rnex 7100 |
. . . . . . 7
|
| 11 | 8, 10 | syl6eqelr 2710 |
. . . . . 6
|
| 12 | 11 | exlimiv 1858 |
. . . . 5
|
| 13 | 7, 12 | jaoi 394 |
. . . 4
|
| 14 | 13 | a1i 11 |
. . 3
|
| 15 | eqeq1 2626 |
. . . . . 6
| |
| 16 | foeq3 6113 |
. . . . . . 7
| |
| 17 | 16 | exbidv 1850 |
. . . . . 6
|
| 18 | 15, 17 | orbi12d 746 |
. . . . 5
|
| 19 | foeq2 6112 |
. . . . . . 7
| |
| 20 | 19 | exbidv 1850 |
. . . . . 6
|
| 21 | 20 | orbi2d 738 |
. . . . 5
|
| 22 | df-wdom 8464 |
. . . . 5
| |
| 23 | 18, 21, 22 | brabg 4994 |
. . . 4
|
| 24 | 23 | expcom 451 |
. . 3
|
| 25 | 4, 14, 24 | pm5.21ndd 369 |
. 2
|
| 26 | 1, 25 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-fn 5891 df-fo 5894 df-wdom 8464 |
| This theorem is referenced by: brwdomi 8473 brwdomn0 8474 0wdom 8475 fowdom 8476 domwdom 8479 wdomnumr 8887 |
| Copyright terms: Public domain | W3C validator |