Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-xrn Structured version   Visualization version   Unicode version

Definition df-xrn 34134
Description: Define the range Cartesian product, or range cross of two classes. Definition from [Holmes] p. 40. Membership in this class is defined by xrnss3v 34135 and ~? brxrn . This is Scott Fenton's df-txp 31961 with different symbols, cf. https://github.com/metamath/set.mm/issues/2469 . (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-xrn  |-  ( A 
|X.  B )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )

Detailed syntax breakdown of Definition df-xrn
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2cxrn 33982 . 2  class  ( A 
|X.  B )
4 c1st 7166 . . . . . 6  class  1st
5 cvv 3200 . . . . . . 7  class  _V
65, 5cxp 5112 . . . . . 6  class  ( _V 
X.  _V )
74, 6cres 5116 . . . . 5  class  ( 1st  |`  ( _V  X.  _V ) )
87ccnv 5113 . . . 4  class  `' ( 1st  |`  ( _V  X.  _V ) )
98, 1ccom 5118 . . 3  class  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )
10 c2nd 7167 . . . . . 6  class  2nd
1110, 6cres 5116 . . . . 5  class  ( 2nd  |`  ( _V  X.  _V ) )
1211ccnv 5113 . . . 4  class  `' ( 2nd  |`  ( _V  X.  _V ) )
1312, 2ccom 5118 . . 3  class  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B )
149, 13cin 3573 . 2  class  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )
153, 14wceq 1483 1  wff  ( A 
|X.  B )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )
Colors of variables: wff setvar class
This definition is referenced by:  xrnss3v  34135
  Copyright terms: Public domain W3C validator