| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnss3v | Structured version Visualization version Unicode version | ||
| Description: A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 31985 with different symbols, cf. https://github.com/metamath/set.mm/issues/2469 . (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| xrnss3v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xrn 34134 |
. 2
| |
| 2 | inss1 3833 |
. . 3
| |
| 3 | relco 5633 |
. . . 4
| |
| 4 | vex 3203 |
. . . . . . . . 9
| |
| 5 | vex 3203 |
. . . . . . . . 9
| |
| 6 | 4, 5 | brcnv 5305 |
. . . . . . . 8
|
| 7 | 4 | brres 5402 |
. . . . . . . . 9
|
| 8 | 7 | simprbi 480 |
. . . . . . . 8
|
| 9 | 6, 8 | sylbi 207 |
. . . . . . 7
|
| 10 | 9 | adantl 482 |
. . . . . 6
|
| 11 | 10 | exlimiv 1858 |
. . . . 5
|
| 12 | vex 3203 |
. . . . . 6
| |
| 13 | 12, 5 | opelco 5293 |
. . . . 5
|
| 14 | opelxp 5146 |
. . . . . 6
| |
| 15 | 12, 14 | mpbiran 953 |
. . . . 5
|
| 16 | 11, 13, 15 | 3imtr4i 281 |
. . . 4
|
| 17 | 3, 16 | relssi 5211 |
. . 3
|
| 18 | 2, 17 | sstri 3612 |
. 2
|
| 19 | 1, 18 | eqsstri 3635 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-res 5126 df-xrn 34134 |
| This theorem is referenced by: xrnrel 34136 |
| Copyright terms: Public domain | W3C validator |