![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-zeroo | Structured version Visualization version Unicode version |
Description: An object A is called a zero object provided that it is both an initial object and a terminal object. Definition 7.7 of [Adamek] p. 103. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
df-zeroo |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | czeroo 16640 |
. 2
![]() | |
2 | vc |
. . 3
![]() ![]() | |
3 | ccat 16325 |
. . 3
![]() ![]() | |
4 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
5 | cinito 16638 |
. . . . 5
![]() | |
6 | 4, 5 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
7 | ctermo 16639 |
. . . . 5
![]() | |
8 | 4, 7 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | cin 3573 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 2, 3, 9 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: zeroorcl 16646 zerooval 16649 |
Copyright terms: Public domain | W3C validator |