MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zerooval Structured version   Visualization version   Unicode version

Theorem zerooval 16649
Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
initoval.c  |-  ( ph  ->  C  e.  Cat )
initoval.b  |-  B  =  ( Base `  C
)
initoval.h  |-  H  =  ( Hom  `  C
)
Assertion
Ref Expression
zerooval  |-  ( ph  ->  (ZeroO `  C )  =  ( (InitO `  C )  i^i  (TermO `  C ) ) )

Proof of Theorem zerooval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 df-zeroo 16643 . . 3  |- ZeroO  =  ( c  e.  Cat  |->  ( (InitO `  c )  i^i  (TermO `  c )
) )
21a1i 11 . 2  |-  ( ph  -> ZeroO  =  ( c  e. 
Cat  |->  ( (InitO `  c )  i^i  (TermO `  c ) ) ) )
3 fveq2 6191 . . . 4  |-  ( c  =  C  ->  (InitO `  c )  =  (InitO `  C ) )
4 fveq2 6191 . . . 4  |-  ( c  =  C  ->  (TermO `  c )  =  (TermO `  C ) )
53, 4ineq12d 3815 . . 3  |-  ( c  =  C  ->  (
(InitO `  c )  i^i  (TermO `  c )
)  =  ( (InitO `  C )  i^i  (TermO `  C ) ) )
65adantl 482 . 2  |-  ( (
ph  /\  c  =  C )  ->  (
(InitO `  c )  i^i  (TermO `  c )
)  =  ( (InitO `  C )  i^i  (TermO `  C ) ) )
7 initoval.c . 2  |-  ( ph  ->  C  e.  Cat )
8 fvex 6201 . . . 4  |-  (InitO `  C )  e.  _V
98inex1 4799 . . 3  |-  ( (InitO `  C )  i^i  (TermO `  C ) )  e. 
_V
109a1i 11 . 2  |-  ( ph  ->  ( (InitO `  C
)  i^i  (TermO `  C
) )  e.  _V )
112, 6, 7, 10fvmptd 6288 1  |-  ( ph  ->  (ZeroO `  C )  =  ( (InitO `  C )  i^i  (TermO `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    |-> cmpt 4729   ` cfv 5888   Basecbs 15857   Hom chom 15952   Catccat 16325  InitOcinito 16638  TermOctermo 16639  ZeroOczeroo 16640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-zeroo 16643
This theorem is referenced by:  iszeroo  16652  iszeroi  16659
  Copyright terms: Public domain W3C validator