MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif2 Structured version   Visualization version   Unicode version

Theorem dfif2 4088
Description: An alternate definition of the conditional operator df-if 4087 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
dfif2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  B  ->  ph )  ->  ( x  e.  A  /\  ph ) ) }
Distinct variable groups:    ph, x    x, A    x, B

Proof of Theorem dfif2
StepHypRef Expression
1 df-if 4087 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 df-or 385 . . . 4  |-  ( ( ( x  e.  B  /\  -.  ph )  \/  ( x  e.  A  /\  ph ) )  <->  ( -.  ( x  e.  B  /\  -.  ph )  -> 
( x  e.  A  /\  ph ) ) )
3 orcom 402 . . . 4  |-  ( ( ( x  e.  A  /\  ph )  \/  (
x  e.  B  /\  -.  ph ) )  <->  ( (
x  e.  B  /\  -.  ph )  \/  (
x  e.  A  /\  ph ) ) )
4 iman 440 . . . . 5  |-  ( ( x  e.  B  ->  ph )  <->  -.  ( x  e.  B  /\  -.  ph ) )
54imbi1i 339 . . . 4  |-  ( ( ( x  e.  B  ->  ph )  ->  (
x  e.  A  /\  ph ) )  <->  ( -.  ( x  e.  B  /\  -.  ph )  -> 
( x  e.  A  /\  ph ) ) )
62, 3, 53bitr4i 292 . . 3  |-  ( ( ( x  e.  A  /\  ph )  \/  (
x  e.  B  /\  -.  ph ) )  <->  ( (
x  e.  B  ->  ph )  ->  ( x  e.  A  /\  ph ) ) )
76abbii 2739 . 2  |-  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }  =  { x  |  (
( x  e.  B  ->  ph )  ->  (
x  e.  A  /\  ph ) ) }
81, 7eqtri 2644 1  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  B  ->  ph )  ->  ( x  e.  A  /\  ph ) ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-if 4087
This theorem is referenced by:  iftrue  4092  nfifd  4114
  Copyright terms: Public domain W3C validator