MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtrucor2 Structured version   Visualization version   Unicode version

Theorem dtrucor2 4901
Description: The theorem form of the deduction dtrucor 4900 leads to a contradiction, as mentioned in the "Wrong!" example at mmdeduction.html#bad. (Contributed by NM, 20-Oct-2007.)
Hypothesis
Ref Expression
dtrucor2.1  |-  ( x  =  y  ->  x  =/=  y )
Assertion
Ref Expression
dtrucor2  |-  ( ph  /\ 
-.  ph )

Proof of Theorem dtrucor2
StepHypRef Expression
1 ax6e 2250 . 2  |-  E. x  x  =  y
2 dtrucor2.1 . . . . 5  |-  ( x  =  y  ->  x  =/=  y )
32necon2bi 2824 . . . 4  |-  ( x  =  y  ->  -.  x  =  y )
4 pm2.01 180 . . . 4  |-  ( ( x  =  y  ->  -.  x  =  y
)  ->  -.  x  =  y )
53, 4ax-mp 5 . . 3  |-  -.  x  =  y
65nex 1731 . 2  |-  -.  E. x  x  =  y
71, 6pm2.24ii 117 1  |-  ( ph  /\ 
-.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   E.wex 1704    =/= wne 2794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ne 2795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator