Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel12131 Structured version   Visualization version   Unicode version

Theorem eel12131 38938
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
eel12131.1  |-  ( ph  ->  ps )
eel12131.2  |-  ( (
ph  /\  ch )  ->  th )
eel12131.3  |-  ( (
ph  /\  ta )  ->  et )
eel12131.4  |-  ( ( ps  /\  th  /\  et )  ->  ze )
Assertion
Ref Expression
eel12131  |-  ( (
ph  /\  ch  /\  ta )  ->  ze )

Proof of Theorem eel12131
StepHypRef Expression
1 eel12131.3 . . . . 5  |-  ( (
ph  /\  ta )  ->  et )
2 eel12131.1 . . . . . . . . 9  |-  ( ph  ->  ps )
3 eel12131.2 . . . . . . . . 9  |-  ( (
ph  /\  ch )  ->  th )
4 eel12131.4 . . . . . . . . . 10  |-  ( ( ps  /\  th  /\  et )  ->  ze )
543exp 1264 . . . . . . . . 9  |-  ( ps 
->  ( th  ->  ( et  ->  ze ) ) )
62, 3, 5syl2imc 41 . . . . . . . 8  |-  ( (
ph  /\  ch )  ->  ( ph  ->  ( et  ->  ze ) ) )
76ex 450 . . . . . . 7  |-  ( ph  ->  ( ch  ->  ( ph  ->  ( et  ->  ze ) ) ) )
87pm2.43b 55 . . . . . 6  |-  ( ch 
->  ( ph  ->  ( et  ->  ze ) ) )
98com13 88 . . . . 5  |-  ( et 
->  ( ph  ->  ( ch  ->  ze ) ) )
101, 9syl 17 . . . 4  |-  ( (
ph  /\  ta )  ->  ( ph  ->  ( ch  ->  ze ) ) )
1110ex 450 . . 3  |-  ( ph  ->  ( ta  ->  ( ph  ->  ( ch  ->  ze ) ) ) )
1211pm2.43b 55 . 2  |-  ( ta 
->  ( ph  ->  ( ch  ->  ze ) ) )
13123imp231 1258 1  |-  ( (
ph  /\  ch  /\  ta )  ->  ze )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  isosctrlem1ALT  39170
  Copyright terms: Public domain W3C validator