![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2imc | Structured version Visualization version Unicode version |
Description: A commuted version of syl2im 40. Implication-only version of syl2anr 495. (Contributed by BJ, 20-Oct-2021.) |
Ref | Expression |
---|---|
syl2im.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2im.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2im.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2imc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2im.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2im.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2im 40 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | com12 32 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: triun 4766 undifixp 7944 rankpwi 8686 2cshwcshw 13571 incexclem 14568 sumeven 15110 cygth 19920 cnpco 21071 txkgen 21455 ontgval 32430 bj-dvelimdv1 32835 eel12131 38938 2ffzoeq 41338 iccpartgt 41363 bgoldbtbndlem3 41695 |
Copyright terms: Public domain | W3C validator |