MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2imc Structured version   Visualization version   Unicode version

Theorem syl2imc 41
Description: A commuted version of syl2im 40. Implication-only version of syl2anr 495. (Contributed by BJ, 20-Oct-2021.)
Hypotheses
Ref Expression
syl2im.1  |-  ( ph  ->  ps )
syl2im.2  |-  ( ch 
->  th )
syl2im.3  |-  ( ps 
->  ( th  ->  ta ) )
Assertion
Ref Expression
syl2imc  |-  ( ch 
->  ( ph  ->  ta ) )

Proof of Theorem syl2imc
StepHypRef Expression
1 syl2im.1 . . 3  |-  ( ph  ->  ps )
2 syl2im.2 . . 3  |-  ( ch 
->  th )
3 syl2im.3 . . 3  |-  ( ps 
->  ( th  ->  ta ) )
41, 2, 3syl2im 40 . 2  |-  ( ph  ->  ( ch  ->  ta ) )
54com12 32 1  |-  ( ch 
->  ( ph  ->  ta ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  triun  4766  undifixp  7944  rankpwi  8686  2cshwcshw  13571  incexclem  14568  sumeven  15110  cygth  19920  cnpco  21071  txkgen  21455  ontgval  32430  bj-dvelimdv1  32835  eel12131  38938  2ffzoeq  41338  iccpartgt  41363  bgoldbtbndlem3  41695
  Copyright terms: Public domain W3C validator