| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimhyp2v | Structured version Visualization version Unicode version | ||
| Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| elimhyp2v.1 |
|
| elimhyp2v.2 |
|
| elimhyp2v.3 |
|
| elimhyp2v.4 |
|
| elimhyp2v.5 |
|
| Ref | Expression |
|---|---|
| elimhyp2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4092 |
. . . . . 6
| |
| 2 | 1 | eqcomd 2628 |
. . . . 5
|
| 3 | elimhyp2v.1 |
. . . . 5
| |
| 4 | 2, 3 | syl 17 |
. . . 4
|
| 5 | iftrue 4092 |
. . . . . 6
| |
| 6 | 5 | eqcomd 2628 |
. . . . 5
|
| 7 | elimhyp2v.2 |
. . . . 5
| |
| 8 | 6, 7 | syl 17 |
. . . 4
|
| 9 | 4, 8 | bitrd 268 |
. . 3
|
| 10 | 9 | ibi 256 |
. 2
|
| 11 | elimhyp2v.5 |
. . 3
| |
| 12 | iffalse 4095 |
. . . . . 6
| |
| 13 | 12 | eqcomd 2628 |
. . . . 5
|
| 14 | elimhyp2v.3 |
. . . . 5
| |
| 15 | 13, 14 | syl 17 |
. . . 4
|
| 16 | iffalse 4095 |
. . . . . 6
| |
| 17 | 16 | eqcomd 2628 |
. . . . 5
|
| 18 | elimhyp2v.4 |
. . . . 5
| |
| 19 | 17, 18 | syl 17 |
. . . 4
|
| 20 | 15, 19 | bitrd 268 |
. . 3
|
| 21 | 11, 20 | mpbii 223 |
. 2
|
| 22 | 10, 21 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
| This theorem is referenced by: omlsi 28263 |
| Copyright terms: Public domain | W3C validator |