MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxpi Structured version   Visualization version   Unicode version

Theorem elxpi 5130
Description: Membership in a Cartesian product. Uses fewer axioms than elxp 5131. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxpi  |-  ( A  e.  ( B  X.  C )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem elxpi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . . . 6  |-  ( z  =  A  ->  (
z  =  <. x ,  y >.  <->  A  =  <. x ,  y >.
) )
21anbi1d 741 . . . . 5  |-  ( z  =  A  ->  (
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
322exbidv 1852 . . . 4  |-  ( z  =  A  ->  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) ) )
43elabg 3351 . . 3  |-  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  ->  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
54ibi 256 . 2  |-  ( A  e.  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
6 df-xp 5120 . . 3  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
7 df-opab 4713 . . 3  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) }
86, 7eqtri 2644 . 2  |-  ( B  X.  C )  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  B  /\  y  e.  C ) ) }
95, 8eleq2s 2719 1  |-  ( A  e.  ( B  X.  C )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   <.cop 4183   {copab 4712    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-opab 4713  df-xp 5120
This theorem is referenced by:  xpdifid  5562
  Copyright terms: Public domain W3C validator