Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqsbc3rVD Structured version   Visualization version   Unicode version

Theorem eqsbc3rVD 39075
Description: Virtual deduction proof of eqsbc3r 3492. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eqsbc3rVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  =  x  <->  C  =  A ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem eqsbc3rVD
StepHypRef Expression
1 idn1 38790 . . . . . . 7  |-  (. A  e.  B  ->.  A  e.  B ).
2 eqsbc3 3475 . . . . . . 7  |-  ( A  e.  B  ->  ( [. A  /  x ]. x  =  C  <->  A  =  C ) )
31, 2e1a 38852 . . . . . 6  |-  (. A  e.  B  ->.  ( [. A  /  x ]. x  =  C  <->  A  =  C
) ).
4 eqcom 2629 . . . . . . . . 9  |-  ( C  =  x  <->  x  =  C )
54sbcbiiOLD 38741 . . . . . . . 8  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  =  x  <->  [. A  /  x ]. x  =  C )
)
61, 5e1a 38852 . . . . . . 7  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  =  x  <->  [. A  /  x ]. x  =  C
) ).
7 idn2 38838 . . . . . . 7  |-  (. A  e.  B ,. [. A  /  x ]. C  =  x  ->.  [. A  /  x ]. C  =  x ).
8 biimp 205 . . . . . . 7  |-  ( (
[. A  /  x ]. C  =  x  <->  [. A  /  x ]. x  =  C )  ->  ( [. A  /  x ]. C  =  x  ->  [. A  /  x ]. x  =  C
) )
96, 7, 8e12 38951 . . . . . 6  |-  (. A  e.  B ,. [. A  /  x ]. C  =  x  ->.  [. A  /  x ]. x  =  C ).
10 biimp 205 . . . . . 6  |-  ( (
[. A  /  x ]. x  =  C  <->  A  =  C )  -> 
( [. A  /  x ]. x  =  C  ->  A  =  C ) )
113, 9, 10e12 38951 . . . . 5  |-  (. A  e.  B ,. [. A  /  x ]. C  =  x  ->.  A  =  C ).
12 eqcom 2629 . . . . 5  |-  ( A  =  C  <->  C  =  A )
1311, 12e2bi 38857 . . . 4  |-  (. A  e.  B ,. [. A  /  x ]. C  =  x  ->.  C  =  A ).
1413in2 38830 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  =  x  ->  C  =  A ) ).
15 idn2 38838 . . . . . . 7  |-  (. A  e.  B ,. C  =  A  ->.  C  =  A ).
1615, 12e2bir 38858 . . . . . 6  |-  (. A  e.  B ,. C  =  A  ->.  A  =  C ).
17 biimpr 210 . . . . . 6  |-  ( (
[. A  /  x ]. x  =  C  <->  A  =  C )  -> 
( A  =  C  ->  [. A  /  x ]. x  =  C
) )
183, 16, 17e12 38951 . . . . 5  |-  (. A  e.  B ,. C  =  A  ->.  [. A  /  x ]. x  =  C ).
19 biimpr 210 . . . . 5  |-  ( (
[. A  /  x ]. C  =  x  <->  [. A  /  x ]. x  =  C )  ->  ( [. A  /  x ]. x  =  C  ->  [. A  /  x ]. C  =  x
) )
206, 18, 19e12 38951 . . . 4  |-  (. A  e.  B ,. C  =  A  ->.  [. A  /  x ]. C  =  x ).
2120in2 38830 . . 3  |-  (. A  e.  B  ->.  ( C  =  A  ->  [. A  /  x ]. C  =  x ) ).
22 impbi 198 . . 3  |-  ( (
[. A  /  x ]. C  =  x  ->  C  =  A )  ->  ( ( C  =  A  ->  [. A  /  x ]. C  =  x )  ->  ( [. A  /  x ]. C  =  x  <->  C  =  A ) ) )
2314, 21, 22e11 38913 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  =  x  <->  C  =  A
) ).
2423in1 38787 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  =  x  <->  C  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436  df-vd1 38786  df-vd2 38794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator