MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-an Structured version   Visualization version   Unicode version

Theorem ex-an 27279
Description: Example for df-an 386. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
ex-an  |-  ( 2  =  2  /\  3  =  3 )

Proof of Theorem ex-an
StepHypRef Expression
1 eqid 2622 . 2  |-  2  =  2
2 eqid 2622 . 2  |-  3  =  3
31, 2pm3.2i 471 1  |-  ( 2  =  2  /\  3  =  3 )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   2c2 11070   3c3 11071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator